Для фрезерования шпоночного паза в качестве технологических баз используем ось 13 и торец 2.
В сводной таблице приводим классификацию технологических баз, указываем их целевую принадлежность, выполнение правила единства и постоянства баз.
1.4. Обоснование простановки операционных размеров
Способ простановки размеров зависит в первую очередь от метода достижения точности. Так как размерный анализ имеет большую трудоемкость выполнения, то применять его целесообразно при использовании метода достижения точности размеров с помощью настроенного оборудования.
Особую важность представляет способ простановки продольных размеров (осевых для тел вращения).
На черновой токарной операции мы можем применить схемы простановки размеров «а» и «б» рис.4.1[1].
На чистовой токарной и шлифовальных операциях применяем схему «г» рис.4.1[1].
1.5. Назначение операционных технических требований
Операционные технические требования назначаем по методике [5]. Технические требования на изготовление заготовки (допуски на размеры, смещение штампа) назначаем по ГОСТ 7505-89. Допуски на размеры определяем по приложению 1 [1], шероховатость – по приложению 4 [1], величины пространственных отклонений (отклонения от соосности и перпендикулярности) – по приложению 2 [1].
Для заготовки отклонения от соосности определим по методике [1].
Определим средний диаметр вала
где di – диаметр i-ой ступени вала;
li – длина i-ой ступени вала;
l – общая длина вала.
dср=38,5мм. По приложению 5[1] определим рк – удельная величина изогнутости. Величины изогнутости оси вала для различных участков определим по следующей формуле:
где Li – расстояние наиболее удаленной точки i-ой поверхности до измерительной базы;
L – длина детали, мм;
Δmax=0,5·рк·L – максимальный прогиб оси вала в результате коробления;
Аналогично рассчитываем отклонения от соосности при термообработке. Данные для их определения также приведены в приложении 5[1].
После расчетов получаем
2. Размерный анализ технологического процесса в осевом направлении
2.1. Размерные цепи и их уравнения
Составим уравнения размерных цепей в виде уравнений номиналов.
2.2. Проверка условий точности изготовления детали
Проверку условий точности выполняем, чтоб убедиться в обеспечении требуемой точности размеров. Условие точности ТАчерт≥ω[А],
где ТАчерт – допуск по чертежу размера;
ω[А] – погрешность этого же параметра возникающая в ходе выполнения технологического процесса.
Погрешность замыкающего звена найдем по уравнению
Из расчетов видно, что погрешность размер К больше допуска. А это значит, что мы должны корректировать план изготовления.
Для обеспечения точности размера [К]:
на 100-ой операции обработаем с одного установа поверхности 2 и 3, тем самым уберем из размерной цепи размера [К] звенья С10, Ж10 и Р10, «заменив» их на звено Ч100(ωЧ=0,10).
После внесения в план изготовления данных коррективов, получаем следующие уравнения размерных цепей, погрешность которых равна:
В итоге получаем 100% качество
2.3. Расчет припусков продольных размеров
Расчет припусков продольных размеров будем вести в следующем порядке.
Напишем уравнения размерных цепей, замыкающим размером которых будут припуски. Посчитаем минимальный припуск на обработку по формуле
где
Рассчитаем величины колебаний операционных припусков
Расчет ведут по формуле (2.2) если количество составляющих звеньев припуска больше четырех.
Находим значения максимальных и средних припусков по соответствующим формулам
результаты занесем в таблицу 2.1
2.4. Расчет операционных размеров
Определим величины номинальных и предельных значений операционных размеров в осевом направлении по методу средних значений
Исходя из уравнений, составленных в пунктах 2.2 и 2.3, найдем средние значения операционных размеров
запишем значения в удобной для производства форме
3. Размерный анализ технологического процесса в диаметральном направлении
3.1. Радиальные размерные цепи и их уравнения
Составим уравнения размерных цепей с замыкающими звеньями-припусками, т.к. почти все размеры в радиальном направлении получаются явно (см. п.3.2)
3.2. Проверка условий точности изготовления детали
Получаем 100% качество.
3.3. Расчет припусков радиальных размеров
Расчет припусков радиальных размеров будем вести аналогично расчету припусков продольных размеров, но расчет минимальных припусков будем вести по следующей формуле
Результаты заносим в таблицу 3.1
3.4. Расчет операционных диаметральных размеров
Определим величины номинальных и предельных значений операционных размеров в радиальном направлении по методу координат средин полей допусков.
Исходя из уравнений, составленных в пунктах 3.1 и 3.2, найдем средние значения операционных размеров
Определим координату средин полей допусков искомых звеньев по формуле
Сложив полученные величины с половиной допуска, запишем значения в удобной для производства форме
4. Сравнительный анализ результатов расчетов операционных размеров
4.1. Расчет диаметральных размеров расчетно-аналитическим методом
Рассчитаем припуски для поверхности 8 по методике В.М. Кована [7].
Полученные результаты заносим в таблицу 4.1
4.2. Сравнение результатов расчета
Посчитаем общие припуски по формулам
Посчитаем номинальный припуск для вала
Результаты расчетов номинальных припусков сводим в таблицу 4.2
Таблица 4.2
Сравнение общих припусков
Метод расчета | z0min | z0max | z0ном |
Расчетно-аналитический | 2,780 | 5,174 | 3,977 |
Расчет операционных цепей | 1,426 | 8,958 | 7,387 |
Найдем данные по изменению припусков
Мы получили разницу припусков в 86%, вследствие неучета при расчете методом Кована следующих моментов: особенностей простановки размеров на операции, погрешности выполняемых размеров, влияющих на величину погрешности припуска и др.
1. Размерный анализ технологических процессов изготовления деталей машин: Методические указания к выполнению курсовой работы по дисциплине «Теория Технологии»/ Михайлов А.В. – Тольятти,: ТолПИ, 2001. 34с.
2. Размерный анализ технологических процессов/ В.В. Матвеев, М. М. Тверской, Ф. И. Бойков и др. – М.: Машиностроение, 1982. – 264 с.
3. Специальные металлорежущие станки общемашиностроительного применения: Справочник/ В.Б. Дьячков, Н.Ф. Кабатов, М.У. Носинов. – М.: Машиностроение. 1983. – 288 с., ил.
4. Допуски и посадки. Справочник. В 2-х ч./ В. Д. Мягков, М. А. Палей, А. Б. Романов, В.А. Брагинский. – 6-е изд., перераб. и доп. – Л.: Машиностроение, Ленингр. отд-ние , 1983. Ч. 2. 448 с., ил.
5. Михайлов А.В. План изготовления детали: Методические указания к выполнению курсовых и дипломных проектов. – Тольятти: ТолПИ, 1994. – 22с.
6. Михайлов А.В. Базирование и технологические базы: Методические указания к выполнению курсовых и дипломных проектов. – Тольятти: ТолПИ, 1994. – 30с.
7. Справочник технолога-машиностроителя. Т.1/под. ред А.Г. Косиловой и Р.К. Мещерякова. – М.:Машиностроение, 1985. – 656с.