Смекни!
smekni.com

Механізм приводу поршневого насосу (стр. 1 из 6)

Курсовий проект

з теорії машин і механізмів

на тему: Механізм приводу поршневого насосу


1. Силове дослідження механізму

Структурний аналіз

Зображуємо структурну схему механізму.

Рис. 1

Номеруємо ланки і позначаємо кінематичні пари.

Складаємо таблицю кінематичних пар.

Таблиця 1. Кінематичнi пари

Назва КП О А1 A2 A3,B3 С4
Ланки КП 0-1 1-2 2-3 3-4 4-5
Клас КП 5 5 5 5 5
Вид руху oб. oб. oб. oб. пост.

Знаходимо ступінь рухомості за формулою Чебишева:

W = 3n-2p5-p4 = 3∙5-2∙7 = 1

де n – число рухомих ланок;

р5 – число кінематичних пар пятого класу;

р4 – число кінематичних пар четвертого класу.

Ділимо важільний механізм на групи Ассура.

Виділяємо структурну групу з ланок 4 – 5.

Рис.2

1) = 2; p5 = 3;

2) W = 3×2 – 2×3 = 0;

Група Асура 2 класа, 2 порядку, 2 виду.

Виділяємо структурну групу з ланок 2 – 3.

1) n = 2; p5 = 3;

2) W = 3∙2 – 2∙3 = 0;

Група Асура 2 класа, 2 порядку, 1 виду.

Рис. 3

Виділяємо механізм першого класу, який складається з ланок 0 – 1.

В загальному, розглянутий механізм другого класу (за класом вищої групи Асура).


1.1 Кінематичне дослідження

Задачами кінематичного дослідження є побудова планів положень механізму, траекторій окремих точок, швидкостей і прискорень ланок механізму. Дані для кінематичного розрахунку ланок механізму.

Розміри ланок важільного механізму :

LOA=0,17 м ; LАВ=1.4 м ; LСD=1,33 м, LО3C=3,2; LО3В=1,6м ;

wn-1=1,8; w1=(R2\R1) ·wn-1=(157,5/72) ·1,8=3,94 c-1 .

Знаходження масштаба плана побудови:

mL = LOA /OA = 0.17/17 = 0.01м/мм .

Побудова плану швидкостей важільного механізму

Для прикладу побудуємо план швидкостей для шостого положення механізму. Рис. 5 (для положення № 6).

Знаходимо швидкість точки А.

VA =LOA ×w1 = 0,17×3,94 = 0,67м/с .

В довільному масштабі з довільної точки відкладаємо відрізокРvа, що зображає швидкість точки А (перпендикулярно до кривошипа ОА в напрямку w1). Знаходимо масштаб побудови плана швидкостей:

mv = Vа/(Рva) = 0.67/67 = 0.01 (м/с)/мм .

Для знаходження швидкості точки B запишемо систему векторних рівнянь:


VB = VА + VBA;

VB = VC + VВC .

Точка b буде лежати на перетині лінії, яка проходить через точку a перпендикулярно до ланки OA, з лінією, що проходить через точку Рv перпендикулярно до ланки BC.

Рис. 5

Знаходимо дійсне значення швидкості ланок механізму:

VО3В = (Рvb)×mv = 13,83×0,01 =0,14 м/с .

VО3С = (Рvc)×mv = 27,66×0,01 =0,28 м/с

VАВ = (ab)×mv = 74,02×0,01 =0,74 м/с

VСD = (cd)×mv = 20,17×0,01 =0,2 м/с .

VD = (Рvd)×mv = 37,02×0,01 =0,37м/с .

Знаходимо кутову швидкість обертання ланки O1A :

w2 = VАB/LВA = 0,74/1,4 = 0,53 рад/с .


Аналогічно знаходимо кутові швидкості ланок ВС і ВD :

w3 = VО3С/LО3С = 0,28/3,2 = 0,09 рад/с .

w4 = VСD/LСD = 0,2 /1,33 = 0,15 рад/с .

Аналогічно будуємо плани швидкостей для інших положень мeханізму.

Будуємо таблицю значень лінійних і кутових швидкостей ланок механізму:

Таблиця 2. Значення лінійних швидкостей ланок механізму

VS2, VS3,В VS4 VAB VC VCD, VD,
0 0,34 0 0 0,67 0 0 0
1 0,39 0,53 1,44 0,92 1,06 0,91 1,85
2 0,66 0,92 2,31 0,88 1,84 1,42 1,27
3 0,77 0,92 2,25 0,5 1,85 1,38 2,77
4 0,66 0,65 1,5 0,95 1,29 0,03 1,81
5 0,44 0,25 0,56 0,48 0,5 0,36 0,67
6 0,31 0,14 0,31 0,74 0,28 0,2 0,37
7 0,41 0,46 1,05 0,79 0,92 0,67 1,27
8 0,59 0,69 1,63 0,68 1,37 1,01 1,99
9 0,7 0,79 1,95 0,43 1,57 1,19 2,42
10 0,69 0,72 1,87 0,1 1,44 1,15 2,37
11 0,55 0,45 1,24 0,29 0,9 0,79 1,6

Таблиця 3. Значення кутових швидкостейланок механізму

W2,c-1 W3,c-1 W4,c-1
0 0,48 0 0
1 0,66 0,33 0,68
2 0,63 0,58 1,07
3 0,36 0,58 1,04
4 0,68 0,4 0,02
5 0,34 0,14 0,27
6 0,53 0,09 0,15
7 0,56 0,29 0,5
8 0,49 0,43 0,76
9 0,31 0,49 0,89
10 0,07 0,45 0,86
11 0,21 0,28 0,59

Побудова плану прискорення важільного механізму Рис. 6 (для положення № 6).

Знаходимо прискорення точки A

aA = w12·lOA = 3,942·0,17 = 2,64 м/с2 .

В довільному масштабі з довільної точки Ра паралельно кривошипу АО в напрямку, який співпадає з напрямком від точки А до т.О (так,як доцентрове прискорення) відкладаємо відрізок Раа, який зображує прискорення точки А.

Знаходимо масштаб плана прискорень:

ma = a/(Paa) = 2,64/66 = 0,04(м/с2)/мм

Рис. 6

Для знаходження прискорення точки B, запишемо систему векторних рівнянь:


aB = aA + aBAt + aBAn ;

аB = aC + aВCn + aВCt .

Для побудови прискорення точки B на плані прискорень виконуємо слідуючі операції :

з точки а відкладаємо відрізок аn2 , що відповідає нормальному рискоренню ланки АВ - aBAn , паралельно АВ в напрмку від В до А, аналогічно з точки Ра відкладаємо відрізок Раn3, паралельно О3В в напрямку від В до О3; він відповідає нормальному прискоренню ланки О3В aО3Bn.

Довжини відрізків, що показують нормальні прискорення aBAn і aО3Bn обчислюємо користуючись такими виразами :

aАВn = VAB2/lAВ = 0,742/1,4 = 0,39 м/с2 ;

аn2 = aАВn /ma = 0,39/0,04 = 9,27мм ;

a О3Bn = VBО32/l BО3= 0,142 /1,6 = 0,01 м/с2 ;

Раn3 = a BО3n /ma = 0,01/0,04 = 0,25мм ;

Точку b на плані прискорень отримуємо на перетині ліній, що показують тангенціальні прискоренн ланок АВ і О3В, тобто на перетині лінії, що виходить з точки n2 перпендикулрно до АВ і лінії, що виходить з точки n3 перпендикулрнодо О3В. Сполучивши точки a і b отримуємо вектор, що зображає прискорення ланки АВ .

aСDn = VСD2 / lСD = 0,22/1,33 = 0,03 м/с2 ;

аn4 = aСDn /ma = 0,03/0,04 = 0,75 мм ;

На лініях, що показують прискорення ланок відкладаємо центри ваги ланок, користуючись такими співвідношеннями :


(AS2) = 0.5 AB

(O3S3) = 0.5 O3C

(CS4) = 0.5 CD

Сполучивши отримані точки з точкою Ра отримуєм вектори, що показують прискорення центрів ваги ланок

Знаходимо дійсні значення прискорень:

Дійсні значення прискорень отримуємо перемноживши довжини відповідних векторів, взятих з креслення, на відповідні масштабні коефіцієнти :

aS2 = (PaS2)×ma =57,6 ·0,04 =2,3 м/с2

aS3 = (PaS3)×ma = 68,47·0,04 =2,74 м/с2

aS4 = (PaS4)×ma = 154,38·0,04 =6,18 м/с2

aS5 = (PaS5)×ma = 184,16·0,04 =7,37 м/с2

аАВt =(n2b)×ma= 28,57·0,04 =1,14 м/с2 ;

аO3Вt=( n3b )×ma= 68,47·0,04 =2,74 м/с2 .

аCDt=( n4d )×ma= 99,95·0,04 =4 м/с2 .

Знаходимо кутову швидкость обертання ланки АB:

e2 = аAВt/lAВ = 1,14/1,4 =0,81 рад/с2 .

e3 = аO3Вt/lO3В =2,74/1,6 =1,71 рад/с2 .

e4 = аtCD/lCD = 4/1,33 =3,01 рад/с2 .

1.2Діаграми переміщень, швидкостей і прискорень веденої ланки

В правій верхній частині листа 1 викреслюють одну під одною координатні осі всіх трьох графіків.

Масштаб часу визначають за формулою:

n-частота обертання віхдної ланки в об/хв.

L-час одного оберту кривошипу зображуємо відрізком 240 мм.

Масштаби отриманих графіків визначають за формулами:

Масштабний коефіцієнт діаграми переміщення:

Масштабний коефіцієнт діаграми швидкостей:

Де

довжина відповідного відрізка(від полюса до початку координат) на діаграмі у мм.

Масштабний коефіцієнт діаграми прискорень:

Де

довжина відповідного відрізка(від полюса до початку координат) на діаграмі у мм.

2. Кінематичне дослідження механізму

2.1 Кінетостатичне дослідження механізму

Задачі кінетостатичного дослідження:

а) Знаходження зовнішніх сил, які діють на ланки механізму;

б) знаходження реакцій у кінематичних парах, тобто сил взаємодії ланок;

в) знаходження зрівноважуючої сили або моменту, прикладених доведучої ланки механізму.

Вихідні дані.

Маса:

- m1=(LОА×q)=(0,17×60)=10,2 кг ;

- m2=(LAB×q)=(1,4×60)=84 кг ;

- m3 ==(LО3С×q)=(3,2×60)=192 кг ;

- m4=(L CD ×q)=(1,33×60)=79,8 кг ;

- m5 =9,4кг.

Моменти інерції :

кг×м2 ;

кг×м2 ;

кг×м2 ;

кг×м2 ;

Визначаємо зовнішні невідомі сили, реакції в кінематичних парах та зрівноважені сили або моменти. Визначаємо сили, що діють на дану групу.


Визначаємо сили тяжіння: