Как правило, качество подобного рода классических оценок гарантируется лишь асимптотически при выборках большого объема. В случае же малых выборок приложение результатов асимптотической теории представляется недостаточно обоснованным. А при обучении системы диагностики желательно в среднем обойтись именно малыми выборками. К тому же, классический подход практически не использует ту априорную информацию о возможных зданиях
Преимущества, которые дает байесовский подход к решению задачи обучения системы диагностики.
a) Байесовский подход может применяться к любым вариантам и частным случаям задачи обучения.
b) При нем не возникает сложного вопроса о выборе необходимых оценок неизвестного параметра и доверительных интервалов, как в классической выборочной теории.
c) Он позволяет довольно просто использовать последовательный анализ результатов обучения, что в классическом подходе очень сложно, а зачастую невозможно.
d) Если практическая проверка применяемой байесовской модели процесса обучения покажет ее некоторую неадекватность, то она легко может быть изменена так, чтобы устранить указанное несоответствие. Причем изменения делаются в рамках самого байесовского подхода.
e) При байесовском подходе могут быть выделены так называемые обновляющие процессы, по изменению характеристик которых можно очень оперативно в ходе самого обучения проверить степень адекватности выбранной вероятностной модели к действительности. В математической статистике подобная процедура носит название анализ остатков (residuals).
f) В случае если априорной информации очень мало, априорное распределение неизвестного параметра все равно может достаточно обоснованно быть выбранным в классе так называемых неинформативных априорных распределений.
g) Если же априорной информации достаточно для формирования априорного распределения, то выбор его в соответствующем классе сопряженных распределений очень упрощает все необходимые вычисления и снижает саму размерность задачи.
2.3 Общее решение задачи определения оптимального момента перехода на статистическую диагностику
Обратная индукция – чтобы приблизить задачу к практике, напомним, что
Обозначим
Считаем, что
Для решения задачи вычисления
Заметим, что
Эти рассуждения мотивируют следующую теорему динамического программирования, которая формализует принцип обратной индукции.
Пусть
Пусть для каждого
Тогда
следовательно,
Чтобы определить оптимальный момент