Смекни!
smekni.com

Технология обжига цинковых концентратов в печи кипящего слоя (стр. 6 из 18)

Уровень в бункере концентрата измеряется комплектом приборов "Vedapuls-Vedamet" с выводом на промышленный компьютером. В момент, когда концентрат в каком-либо бункере опускается ниже заданного уровня, плужковый сбрасыватель этого бункера опускается на ленту транспортера. Плужковые сбрасыватели остальных бункеров поднимаются. Загрузка продолжается до заданного верхнего уровня.

При нормальной подаче концентрата из загрузочного бункера на питатель склада наличие концентрата контролируется флажком. В случае отсутствия концентрата на питателе флажок опускается и автоматически включаются электровибраторы бункера КСК воздушного обрушения. Как только произошло обрушения, контакт размыкается, так как флажок поднялся, останавливаются электровибраторы и закрывается клапан КСК на воздушном обрушении.

На транспортерах, подающих концентрат из склада концентратов в бункера печей КС, наличие концентрата фиксируется также флажками, которые дают импульс на сигнальные лампы, установленные на центральном щите управления. Для работы на ручном управлении необходимо все ключи, установленные на щите, перевести из положения "автоматическое" в положение "ручное" и затем запускать в работу все агрегаты в отдельности непосредственно на месте.

Регистрация давления воздуха перед печью КС

Давление воздуха перед печью или так называемая "упругость дутья" складывается из сопротивления газоходов, пода печи (в сумме около 100-150 мм вод. ст.) и сопротивления самого слоя. Нормальная упругость дутья для работающей печи 2000-4000 мм вод. ст. Изменение упругости дутья в ту или иную сторону свидетельствует об ухудшении работы печи кипящего слоя, т.е. Указывает на ненормальное кипение слоя, образование в нем спеков или на забивание воздухораспределительных отверстий в соплах. Упругость дутья измеряется самопишущим тягомером типа РП-160 со шкалой 0-4000 мм вод. ст.

Дистанционное управление и блокировка электродвигателей оборудования, обслуживающего печь КС

При остановке транспорта огарка под печами - скребкового транспортера, предусматривается автоматическое отключение (остановка) шнеков, установленных на разгрузке печей КС и на газоходной системе. Для этой цели применяют блокировку электродвигателей оборудования. Кроме того, предусмотрено ручное управление агрегатами путем установки специальных ключей на центральном пульте управления.

2.3 Разработка гибридной структуры управления процессом. Постановка задач исследования и проектирования

Как уже отмечалось в п.2.1 печь кипящего слоя можно рассматривать, как непрерывно действующий реактор почти идеального перемешивания. Загружаемый сульфидный цинковый концентрат в реакционной ванне печи становится текуч в состоянии кипящего слоя: интенсивно перемешивается, перетекает через сливной порог и приобретает другие свойства жидкости за счет подаваемого под давлением воздуха в печь под слой концентрата. Главной целью обжига является перевод сульфидного цинкового концентрата в окисленный цинк.

Входными потоками являются: поток сульфидного цинкового концентрата и поток воздуха, обогащенного кислородом. При этом от расхода концентрата зависит весь режим работы печи кипящего слоя (КС), ее производительность, тепловой баланс, качество готового огарка. Расход обогащенного кислородом дутья влияет на скорость ведения процесса обжига, температуру в печи, обеспечение режима псевдоожижения, манометрический режим и т.д.

Важнейшие выходные переменные: количество получаемого огарка, его химический состав, температура в кипящем слое, манометрический режим в печи.

Основные возмущающие воздействия: химический состав концентрата, его гранулометрический состав, влажность и удельный вес.

В существующих системах управления процессом обжига цинковых огарков в печах КС основной регулируемой переменной является температура кипящего слоя, которая регулируется с помощью изменения расхода концентрата. При этом автоматически стабилизируется: расход концентрата, расход дутья, расход кислорода, разряжение в своде печи.

Основным недостатком существующих систем управления является то, что в них регулируется температура в КС, которая является лишь косвенной оценкой качества готового огарка. Необходимо также учитывать то, что поддержание гидродинамического режима в кипящем слое и манометрического режима в печи осуществляется оператором "вручную". При этом оператор, исходя из своего опыта и интуиции, и, манипулируя уставками регуляторов, выдает задания системам стабилизации: расхода дутья, расхода кислорода, разрежения под сводом печи, расхода концентрата и выгружаемого огарка.

Нами, исходя из анализа существующих систем управления процессами в кипящем слое и современных достижений в области теории управления, предложена структура системы, позволяющая управлять качеством готового раствора "напрямую", а не косвенно (через температуру слоя). Кроме того, поддержание соответствующей гидродинамической обстановки и манометрического режима в печи КС в предлагаемой структуре системы "перекладывается" на компьютер, что снижает влияние на процесс человеческого фактора.

Для реализации этих задач в структуру системы управления (рис.4) кроме традиционного канала управления "расход концентрата - температура в КС" включена подсистема оптимального управления (включающая математическую модель, описывающая материальный и тепловой балансы процесса обжига, а также алгоритм поиска экстремума целевой функции) и интеллектуальная подсистема управления гидродинамическим и манометрическим режимами в печи КС.

Недостатком имеющихся систем управления обжигом цинковых концентратов в кипящем слое является то, что температура в КС (которая является лишь косвенной оценкой качества готового огарка) поддерживается в довольно узком диапазоне независимо от качества исходного сырья. Предлагаемая система позволяет на основе оперативного анализа химсостава и физических свойств концентрата с помощью математической модели процесса и алгоритма оптимизации рассчитать такие температуру - Т*зад и расход концентрата - F*к-та, которые доставляли бы критерию оптимальности (качеству готового огарка) экстремальное значение. В качестве критерия оптимальности выбирается либо концентрация кислоторастворимого цинка (поиск максимума целевой функции), либо концентрация нерастворимого


сульфида цинка (поиск минимума целевой функции).

Рис.4. Структурная схема системы управления процессом обжига цинковых концентратов в кипящем слое

Такая структура позволяет определять оптимальный режим подачи концентрата в печь КС и оптимальную температуру кипящего слоя на какой-то фиксированный промежуток времени. Объемы существующих на цинковом заводе "Казцинк" бункеров способны обеспечивать подачу концентрата в течении 8-9 часов. Таким образом, появляется возможность проводить усредненный анализ химического состава и физических свойств (грансостав, влажность и удельный вес) концентрата в течение одной смены еще до начала его переработки в печи КС. Анализ проводится во время выработки очередного бункера, по окончании которой питание печи КС переключается на второй бункер, в котором уже определены химические и физические свойства концентрата. Во время работы печи с этим бункером производится усредненный анализ концентрата первого бункера и по мере выработки второго бункера питание переводится на первый и т.д.

Организация питания печи КС с двумя бункерами имеет два преимущества. Во-первых, с помощью математической модели и алгоритма оптимизации можно осуществлять расчет оптимальных значений расхода концентрата и температуры КС, доставляющих экстремум целевой функции (например, концентрация кислоторастворимого цинка в готовом огарке). Во-вторых, появляется возможность управлять процессом по каналу: "возмущающее воздействие - температура в печи", что позволяет заранее определять такой расход концентрата (F*к-та), который бы устанавливал заданную температуру (Т*зад) в КС, и таким образом компенсировал бы возмущающее воздействие.

Для реализации предложенной гибридной структуры управления необходимо решить следующие исследовательские задачи:

разработать подсистему оптимального управления процессом с использованием математической модели и алгоритма поиска экстремума;

разработать интеллектуальную подсистему управления гидродинамическим режимом в кипящем слое и манометрическим режимом в печи КС:

рассчитать оптимальные настройки регулятора подсистемы стабилизации температуры.

С целью внедрения предлагаемых подсистем необходимо разработать следующую проектную документацию:

информационное обеспечение АСУТП;

организационное обеспечение АСУТП;

алгоритмическое и программное обеспечения АСУТП;

техническое обеспечение АСУТП;

расчет экономической эффективности от внедрения АСУТП;

мероприятия по технике безопасности и охраны труда.

2.4 Разработка подсистемы оптимального управления

Основным элементом подсистемы оптимального управления является математическая модель процесса обжига концентратов в печи КС. К настоящему времени существует достаточно большое количество исследований, посвященных разработке такой математической модели. Наиболее полно описаны физико-химические процессы обжига цинковых концентратов в псевдоожиженном слое в работах Данилина Л.А. [5,6].