Смекни!
smekni.com

Исследование и разработка составов масс высоковольтного фарфора с повышенными электромеханическими характеристиками (стр. 11 из 18)

а) подтверждено ожидаемое повышение долговечности и надежности керамического материала на основе глинозема с использованием свинцовой замазки; б) наибольшее снижение прочности отмечается в кварцевом керамическом материале; изоляторы из этого материала достигли максимального срока эксплуатации уже по истечении 15 лет и требуют замены;

в) глиноземистый фарфор более ранних сроков выпуска, отличающийся более высоким качеством, также имеет эффект старения;

Рентгенодифрактометрические кривые кварцевого и глиноземистого фарфоров для изоляторов

Рис.16


Здесь характерная разница по микроструктуре проявляется особенно явно

Измерение разрушающей нагрузки длинностержневых изоляторов после различных сроков эксплуатации (одинаковая производственная партия)

Рис.17 Утолщением показана 1%-ная квантиль

Измерение прочности изоляторов во времени (по отношению к 1%-ной квантили силы разрушения)

Рис.18

г) у так называемых смешанных масс ( кварц с добавками глинозема или глинозем с добавками кварца) снижение прочности значительно выше.


Анализ преобладающих дефектов

Будущие научно-технические исследования с целью разработки новых и усовершенствованных материалов должны быть основаны на анализе преобладающих дефектов. При этом керамография и современная рентгенотехника могут оказать большую помощь.

Рис. 19 иллюстрирует дефекты на излом согнутых стержней глиноземистого фарфора двух видов и результаты их фактографического исследования по С120 и С130.

Поверхность излома глиноземистого фарфора С120 с порой, вызвавшей излом, стеклом и SiO2

Рис.19

Типичным дефектом в современных глиноземистых фарфорах являются зоны с высоким содержанием стекловидной фазы в сочетании с порами и зернами из SiO2 (кварца). В зоне напряжений, вызывающих излом, стекловидная фаза всегда характеризовалась большим количеством накоплений SiO2 или зерен кварца, чем матрица. Поэтому можно предполагать, что в исходном состоянии в этих зонах имеются достаточно объемные накопления SiO2 или зерен кварца, которые частично взаимодействовали с окружающей матрицей, а частично сохранялись в виде крупных зерен. Возможно, часть дефектов, обнаруженных в виде пор, в первоначальном состоянии была заполнена зернами кварца, которые во время излома были раздроблены и выпали. Такие зерна кварца с трещинами были обнаружены также на микроснимках.

Вредный кристаллит кварца в глиноземистом фарфоре С130

Рис. 20

Поверхности излома глиноземистого фарфора, причем излом вызван стеклом и зерном SiO2

Рис.21

На основании анализа дефектов можно сделать следующие выводы.

В глиноземистых фарфорах С120 и С130 имеются остатки кварца с различными разметками кристаллов. При исследовании кристаллов размером от 59 до 100 мкм они вызвали излом. Меньшие вредные включения кварца, характеризующиеся величиной кристаллов в пределах 2 – 30 мкм, показаны также на рис.22. Точечные анализы х3, х4 и х5 однозначно подтверждают наличие кварца и позволяют сделать вывод, что существует еще зона перехода к стекловидной фазе, т.е. зона кварца с прилегающей стекловидной фазой.

Рис. 20, 21 показывают вредный кристаллит кварца в глиноземистом фарфоре С130. Излом проходит по всей длине грани на пути около 10мкм. Поверхность кварца взаимодействовала с окружающей матрицей, к ней прилегает стеклофаза. Характерными для этой микроструктуры являются весьма тонкокристаллические, скрещенные между собой муллитовые иглы и продолговатые кристаллы корунда. Крупные зерна кварца, которые могут вызвать сетку микротрещин, представляют собой компоненты сырья – полевого шпата и каолина [9].

Микроструктура – решающий фактор качества материала

По Петцову [9] структура материала включает в себя совокупность всех фазовых зон, участвующих в строении, и дефектов, входящих в его состав. Структура в существенной мере определяет многие свойства материала, в том числе прочность и поведение в процессе старения. Проведено огромное количество исследований причин, повышающих или снижающих прочность, что позволяет пользоваться результатами этих работ.

Керамические материалы характеризуются многофазной поликристаллической микроструктурой (рис.23).

Микроснимок со включениями кварца х3, х4, х5 в глиноземистом фарфоре

Рис.22

Схема многофазной поликристаллической микроструктуры глиноземистого фарфора

Рис.23

К микроструктуре фарфоровых материалов для высоковольтных изоляторов предъявляются два основных требования:

1) высокая механическая прочность, обеспеченная очень высоким содержанием и гомогенным распределением корунда;

2) высокая стойкость против выветривания (устойчивость к отказу) в процессе длительной эксплуатации за счет сокращения до минимума количества кварца во всех размерах (формах).

Возможность легкой и надежной характеристики глиноземистого фарфора разного качества от различных производителей путем качественного и количественного определения твердых фаз на рентгеновском дифрактометре показана на рис.24.

На этом рисунке внимание привлекает различный уровень содержания остаточного кварца при примерно одинаковом содержании корунда.

В последних разработках, в которых в качестве носителя Al2O3 применялся спекшийся боксит, впервые удалось достигнуть почти полного растворения вредного остаточного кварца рано образующимися агрессивными эвтектическими жидкими фазами расплава.

Рентгенодифрактометрические кривые разных видов глиноземистого фарфора с различным содержанием кварца


Рис.24

Микроструктура этого нового материала, лишенного остаточного кварца, показана на рис.25а. Микроснимок 25б показывает материал с наилучшей микроструктурой, характеризующийся высоким содержанием корунда при очень небольшом количестве остаточного кварца. Наименее выгодной является микроструктура материала от производителя (рис.25в), характеризующегося наиболее высоким содержанием вредного остаточного кварца. Для повышения физико-математических свойств желательно, чтобы максимальное количество Al2O3 имело форму корунда, а размеры муллитовых игл были как можно меньше. Микроструктура, показанная на рис.25, соответствует этой цели.

Микроснимок микроструктуры высокопрочного бокситового фарфора С130, подвергнутого химическому травлению; температура спекания – 1190ºС

Рис.25 А – матрица – муллит (А1) и стекловидная фаза (А2); В – частица корунда; С – пора

Перспективное направление и основные пути дальнейшего развития

В разработке высококачественных изоляторов из глиноземистого фарфора можно выделить несколько перспективных направлений и путей развития (рис. 26,27).

- Разработка материалов с усовершенствованной микроструктурой, по мере возможности полностью лишенной вредного остаточного кварца.

- Максимальное превращение Al2O3, введенного в виде глинозема или других носителей Al2O3, в корунд, так как благодаря своим высоким показателям модуля упругости и плотности корунд представляет собой компонент микроструктуры, от которого зависит ее прочность.

- Несмотря на то, что взаимодействие Al2O3 с SiO2 не позволяет полностью исключить муллитовую кристаллическую фазу, целесообразно свести до минимума размеры муллитовых игл и количественную долю муллита в микроструктуре в пользу максимального увеличения количества корунда.

Путь решения с указанием приоритетных мероприятий, предпринимаемых для достижения свойств, показанных на рис.27


Рис.26

В то время как в кварцевом фарфоре применение агрессивной низковязкой жидкой фазы расплава не желательно для прочности из – за растворения кварца, ее присутствие в глиноземистом фарфоре приобретает огромное значение для достижения желательных характеристик микроструктуры. Чем больше будет количество агрессивной стекловидной фазы, которое может образоваться во время спекания в результате рано начинающихся эвтектических процессов расплавления, тем лучше будут условия для инициирования растворения кварца и для образования максимального количества корунда.

Примерный количественный состав механически прочной микроструктуры, стойкой против выветривания и устойчивой к отказу в процессе эксплуатации изделий

Рис. 27 Содержание стекловидной фазы около 45%

- Создать технологические условия формирования желательных характеристик микроструктуры путем приспособления процесса обжига и охлаждения. При этом выгодны интенсивная восстановительная атмосфера обжига при температуре свыше 1000ºС, возможно низкая температура обжига и ускоренное охлаждение после его завершения.