Смекни!
smekni.com

Експлуатація складних технічних об'єктів (стр. 3 из 4)

4. Мети дослідження експлуатації систем

Кожний з існуючих методів прогнозування має свої достоїнства й недоліками щодо тих або інших областей застосування. Для визначення передумов застосування того або іншого методу прогнозування (або необхідності розробки нового методу) необхідний аналіз не тільки застосовуваного математичного апарата, але й розгляд характеристик класу об'єктів прогнозування. Як еталон класу складних об'єктів у книзі розглядаються складні системи техногенного походження з різних областей життєдіяльності.

Для рішення конкретних завдань прогнозування технічного стану (ТС) складних об'єктів необхідний аналіз даних експлуатації його підсистем як об'єктів прогнозування. Як складні об'єкти діагностування будуть розглянутий космічний апарат (КА) і колона поділу нафтових фракцій.

Прогнозування технічного стану, поряд із завданнями контролю технічного стану й пошуку місця й причин відмови, є завданнями технічного діагностування.

Експлуатація складних об'єктів (далі по тексту просто об'єктів або систем) з автоматизованими системами діагностування показує, що такі системи реагують не на всі несправності. Незважаючи на введення дорогого діагностичного встаткування, не завжди вдається домогтися значного зниження часу пошуку несправностей і пошуку істотних прогнозуючих ознак. При цьому ідея повного видалення людини із процесу діагностування не здійснилася. Крім того, зіставлення різних пошукових ситуацій показує, що ефективність застосування систем діагностики дуже часто виявляється нижче тією, на яку розраховують розроблювачі.

Ціль дослідження експлуатації систем полягає в наступному:

Забезпечити високу ефективність функціонування або застосування експлуатованої системи по призначенню в рамках установлених строків.

Забезпечити більшу тривалість експлуатації й готовність системи до застосування.

Підтримати деяка гарантована кількість виробів у системі в стані готовності.

Забезпечити високу економічність і безпеку виконання експлуатаційних процесів.

Головним завданням системи експлуатації як такий є постійний контроль і підтримка технічного стану й надійності цих систем на рівні, достатньому для виконання ними заданих функцій або готовності до застосування й виконання цільових завдань.

Нормальне функціонування складної технічної системи при експлуатації забезпечується спеціальними технічними засобами й системами, а також планомірною цілеспрямованою роботою численних колективів експлуатуючому підприємстві й організацій.

З метою забезпечення високої надійності сучасної техніки у виробництві й підтримки її в процесі експлуатації широко використовують різноманітні методи й автоматизовані засоби неруйнуючого контролю й технічного діагностування. Однак трудомісткість операцій контролю для різних видів техніки становить від 15 до 50% трудомісткості основних операцій її виготовлення.

Витрати за весь період експлуатації на ремонт і технічне обслуговування техніки у зв'язку з її зношуванням по багаторічним статистичним даним перевищують вартість нових верстатів або машин в 5...8 разів, а радіотехнічної апаратури в - 10...12 разів.

За закордонним даними, 20...25% відмов різного роду встаткування викликається помилками обслуговуючого персоналу. 40...90 % подій на транспорті, у різних енергосистемах, а також більшість травм на виробництві є результатом помилкових дій людей.

Разом з тим розвивається й удосконалюється матеріально-технічна база промисловості - основа високої якості й надійності техніки. Розробляються прогресивні матеріали, освоюються нові технологічні процеси, удосконалюється виробниче, іспитове встаткування. Розробляються й усе ширше впроваджуються системи автоматизованого проектування, виготовлення, контролю й діагностики. Крім того, впроваджуються галузеві й міжгалузеві інформаційно-керуючі системи, комплексні системи керування якістю продукції.

У теорії експлуатації систем отримано досить багато фундаментальних результатів у трьох самостійно, що розвиваються напрямках, дослідження:

ймовірносно-статистичному напрямку, пов'язаному з дослідженням фізики відмов. Цей напрямок використовується для систем, що володіють складної структурою й складними зв'язками між елементами.

Детермінованому напрямку, призначеному для механічних систем, конструкцій, матеріалів і елементів.

Інформаційному напрямку, що виник порівняно недавно.

У рамках першого напрямку розвинені математичні методи оцінки надійності, статистичної обробки результатів випробувань і експлуатації, розробки типових відбірок структур виробів, а також планування випробувань, контролю й прогнозування надійності, удосконалювання системи експлуатації.

У рамках другого напрямку вивчені механізми зношування, міцності, корозії, розроблені методи розрахунку на міцність і зношування. Постійно розробляються нові технологічні процеси, що підвищують надійність матеріалів, елементів і машин.

Іде процес взаємного злиття трьох напрямків, перенесення раціональних ідей і наукових результатів з однієї області в іншу. На основі цього формується єдина наука про надійність техніки.

З моменту початку створення й застосування об'єкта (стадіях матеріального життєвого циклу) з'являється можливість проведення експериментальних досліджень поряд з теоретичними дослідженнями (моделюванням). Таким чином, з'являється можливість експериментальної перевірки правильності раніше використаних моделей і ухвалених рішень. Причому перевірці можуть бути піддані також наслідки прийнятих рішень, тобто споживчі властивості проектованого виробу, створюваного й експлуатованого по прийнятою документацією. Саме ці завдання вирішуються відповідно до програм експериментального відпрацьовування й програмами виробничого контролю, а також державних випробувань і досвідченої експлуатації.

Одержання експериментальної інформації в одній крапці досліджуваного діапазону властивостей створюваної системи зв'язано, як правило, з необхідністю створення відповідного досвідченого зразка, що моделює досліджувані властивості штатного зразка. При цьому мова йде вже не про математичний, а скоріше про фізичну або хімічну модель. Іноді для вивчення однієї крапки (сполучення властивостей) необхідно провести статистичний експеримент, тобто підготувати й випробувати вибірку (кілька зразків).

Сполучення теоретичних і експериментальних досліджень, тобто математичного й фізичного моделювання, дозволяє найбільше раціонально використовувати апріорну інформацію (попередній досвід) і оперативну (поточну) інформацію про виконання ухвалених рішень як основу для прийняття наступних рішень.

У багатьох галузях промисловості, зайнятих створенням складної техніки, завдання експериментальних досліджень вирішують на спеціально передбачених стадіях виготовлення й випробувань досвідчених зразків, їхнього технологічного відпрацьовування, а також досвідченої експлуатації. Випробування проводять на фізичних моделях, макетах, досвідчених або серійних зразках. Вимірюючи властивості випробуваних об'єктів, перевіряючи їхню схоронність протягом заданого часу (наробітку), дослідник підтверджує правильність ухвалених рішень або одержує інформацію про відхилення від розрахункових значень для уточнення раніше ухвалених рішень.

Будь-які експериментальні дослідження об'єкта дозволяють збільшити обсяг апріорної інформації, що, у свою чергу, може бути ефективно використаний для побудови його моделі (керування або спостереження). Зокрема, більші обсяги навчальних вибірок можуть бути оброблені обсмоктувати мережами прямого поширення, що володіють найбільшою інформаційною ємністю.

Організація сервісного обслуговування складного встаткування.

Сьогодні розвиток науки й техніки створило унікальну ситуацію - найчастіше застосування новітніх технологій і встаткування стає очевидною конкурентною перевагою. Саме тому використання сучасних систем і механізмів стало звичайним у різних областях промисловості нової . Однак складність і інтелектуальність агрегатів вимагає відповідного до них відносини - кваліфікованої експлуатації й обслуговування. Значна частина провідних виробників сучасного встаткування при його продажі чітко домовляється про умови його роботи й необхідні регламенти. При цьому способи реалізації такого сервісу можуть бути різними. Як правило, організація, що експлуатує техніку, вибирає найбільш оптимальний для її конкретних умов метод обслуговування складних агрегатів. Вибір умов звичайно обмовляється з фірмою-виробником і є предметом договору. Проте, можна виділити ряд істотних аспектів, єдиних для всіх, на які можна орієнтуватися при організації сервісного обслуговування складної техніки.

У силу складності й інтелектуальності сучасної техніки в промислово розвинених країнах останнім часом одержала поширення система інформаційних технологій наскрізної підтримки виробу протягом його життєвого циклу, або CALS-Технології. У ця система одержала назву ІПЖЦВ Технології (Інформаційна Підтримка життєвого циклу Виробу). Ці технології засновані на стандартизованому впорядкованому поданні даних про виріб і систему колективного доступу до цих даних. Такий підхід істотно знижує витрати на всіх етапах життєвого циклу складного встаткування - від проектування до утилізації.

Зараз активно впроваджуються ці системи. Особливо помітно це в наукомістких галузях промисловості. Наприклад, організована галузева лабораторія підтримки життєвого циклу виробів. Ряд підприємств уже приступився до реалізації проектів по впровадженню ІПЖЦВ-технологій для супроводу своєї продукції. Оскільки введення складного встаткування у виробництво має на увазі досить високий ступінь його автоматизації й комп'ютеризації, система сервісу повинна стати однієї з невід'ємних частин технологічного циклу. Використання ІПЖЦВ-технологій робить це природним процесом. У принципі, не настільки важливо, є сервіс частиною виробництва або здійснюється сторонньою організацією. Необхідним стає лише постійний інтерактивний контроль параметрів устаткування.