Смекни!
smekni.com

Расчет трансформатора (стр. 1 из 4)

Введение

Известно, что наибольшее распространение в трансформатостроении получили силовые трансформаторы со стержневыми магнитопроводами, как наиболее простые и удобные в конструктивном отношении по сравнению с трансформаторами броневого типа. Трансформаторы броневого типа в России в основном используются в маломощных радиотехнических установках. Трансформатор со стержневым магнитопроводом обладает лучшими условиями охлаждения обмоток и сердечника, доступностью осмотра обмоток при ревизии трансформатора, простотой сборки и ремонта сердечника и т.д. [1].

В курсовой работе в краткой форме произведен расчет силового трансформатора без подробного рассмотрения ряда второстепенных деталей и узлов имеющих значение при заводском проектировании. Однако это дает возможность овладеть основами расчета трансформаторов.

Исходные данные для проектирования

Номинальная мощность трансформатора………. S = 400 кВА
Число фаз……………………………… m =3
Частота сети……………………………. f=50 Гц
Режим работы трансформатора……………… продолжительный
Номинальное высшее линейное напряжение……. UВН = 10000 В
Номинальное низшее линейное напряжение……. UНН = 515 В
Схема и группа соединения обмоток…………. Y/Y – 12
Способ охлаждения трансформатора…………. естественное масляное
Напряжение короткого замыкания……………. uк = 4,5%
Потери короткого замыкания………………. Рк = 3000 Вт
Потери холостого хода……………………. Ро = 1500 Вт
Ток холостого хода……………………….Материал обмоток………………………. io = 4,9%алюминий

Обозначим, для краткости, первичную обмотку трансформатора –1, а вторичную – 2.

1 Основные электрические величины

Номинальные фазные напряжения (при этом принимаем во внимание, что при схеме звезда):

В.

Номинальные токи. При схеме «звезда» Iф = Iл

т.о. I1 = I= 448,4 А; I2 = I= 23,1 А

2. Определение основных размеров трансформатора

Данные для расчета:

- металл провода обмоток – алюминий;

- марка стали сердечника – 3411 (Э310);

- толщина листов стали – 0,35 мм;

- удельные потери в стали р10= 1,75 Вт/кг;

- магнитная индукция в стержнях Вс=1,6 Тл;

- средняя плотность тока в обмотках j= 2 А/мм2;

Отношение веса стали к весу металла обмоток


,

где pм– удельные потери в металле обмоток для алюминия pм=12,75 Вт/кг.

ЭДС на один виток

В/виток.

где С0 – коэффициент определяемый формой катушек, материалом. При трехслойной конструкции, алюминий, круглая форма катушек

С0 = 0,14…0,21 [4]. Примем С0 =0,17.

Число витков в обмотке 1

виток;

Число витков в обмотке 2

витков.

Уточненное значение ЭДС на виток

В/виток
Площадь поперечного сечения стали стержня сердечника
см2;

Рисунок 2.1 Ступенчатая форма поперечного сечения стержня трансформатора

Число ступеней стержня сердечника n=6; [4]

Число каналов в сердечнике – сердечник без каналов;

Коэффициент заполнения площади описанного круга площадью ступенчатой фигуры kкр=0,935 [4];

Изоляция стали – бумага;

Коэффициент заполнения ступенчатой фигуры сталью fс=0,92 [4];

Диаметр круга, описанного вокруг стержня сердечника

см.

Номинальная мощность обмотки 1 на стержень сердечника


кВА;

где с – число фаз.

Номинальное напряжение обмотки 1 на стержень сердечника

В;

Номинальный ток обмотки 1 на стержень сердечника

А;

Число витков обмотки 1 на стержень сердечника

виток;

Предварительная площадь поперечного сечения провода обмотки 1

мм2;

Тип обмотки 1 – цилиндрическая двухслойная из провода прямоугольного сечения [2];

Номинальная полная мощность обмотки 2 на стержень сердечника

кВА;

Номинальное напряжение обмотки 2 на стержень


В;

Номинальный ток обмотки 2

А;

Число витков обмотки 2 на стержень

витков;

Предварительная площадь поперечного сечения провода обмотки 2

мм2;

Тип обмотки 2 – многослойная цилиндрическая из провода круглого сечения [2].

Испытательное напряжение обмотки 1

кВ; [4]

Испытательное напряжение обмотки 2

кВ; [4]

Изоляционный цилиндр между обмоткой 1 и сердечником δцоне предусматривается;

Полное расстояние между обмоткой 1 и стержнем сердечника

δо=0,9 см; [4]

Расстояние между обмоткой и ярмом

lо=3 см;

Толщина изоляционного цилиндра в промежутке между обмотками 1 и 2

δц12=0,3 см;

Толщина каждого из двух вертикальных каналов

ак12=0,5 см;

Полное расстояние между обмотками 1 и 2

δ12=2.ак12+δц12=2.0,5+0,3=1,3 см;

Предварительная радиальная толщина обмотки 1 из алюминиевого провода при мощности одного стержня от 50 до 500 кВт δ1= 3,6…4,4, принимаем δ1=4 см [4].

Предварительная радиальная толщина обмотки 2 при предыдущих мощностях δ2= 2,5…3, принимаем δ2=2,7 см [4].

Предварительное приведенное расстояние между обмотками

см.

Средний диаметр обмотки 1

см;

Средний диаметр обмотки 2

см;

Средняя длина витка обмоток

см.

Активная составляющая напряжения короткого замыкания

;

Индуктивная составляющая напряжения короткого замыкания

;

Высота обмоток по оси стержня сердечника

см;

где Кр= 0,95…0,97 – коэффициент учитывающий переход от средней длины магнитных линий потоков рассеяния к действительной высоте обмоток по оси стержня [4].

Рисунок 2.3 Предварительный эскиз расположения обмоток в окне трансформатора


Высота окна сердечника

см.

Отношение высоты окна сердечника к диаметру стержня сердечника

,

При обмотках из алюминиевого провода в трансформаторах с масляным охлаждением lc/D0=4,2…5,2 [4]

3. Расчет обмоток трансформатора

Уточнение средней плотности тока в обмотках

А/мм2.

где kм– коэффициент учитывающий потери в отводах и потери от потоков рассеяния в баке трансформатора. kм=0.96…0,92 [4].

γм удельный вес алюминия, γм=2,7 кг/см3.

Предварительная удельная тепловая загрузка поверхности обмотки 1

q – количество теплоты переданное маслом охлаждающей поверхности, q1≤ 700…900 – при цилиндрической, винтовой обмотке из алюминия, режим продолжительный. Принимаем q1=700 Вт/м2;

Предварительная удельная тепловая загрузка поверхности обмотки 2

q2≤500…700 – при многослойной обмотке из алюминия, с проводом круглого сечения. Принимаем q1=500 Вт/м2 [4].