V = (0,006*(2,43+1)*89,24)/2,97 = 0,62 м3/сек
где yц и yf-мольные доли компонентов (определяются по x-y диаграмме).
V = (0,006*(2,43+1)*82,87)/2,66 = 0,64 м3/сек
Расчет проведем по методике предложенной в [1].
Для колпачковых тарелок предельно допустимая скорость рассчитывается по уравнению:
где
Верхняя часть аппарата:
где xср.нк– средний состав жидкости для верхней части колонны, кмоль/кмоль.
Нижняя часть аппарата:
Определим диаметр колонны для верха и для низа:
Верх.
Низ:
Примем стандартный диаметр колонны одинаковый для верхней и нижней части и равный
Параметры колпачковой тарелки типа ТСК-1 Свободное сечение колонны
где
h – расстояние между тарелками, м [1];
h1 - высота сепарационной части над верхней тарелкой, м;
h2 - расстояние от нижней тарелки до днища колонны, м.
Значения h1 и h2 выбрать в соответствии с практическими рекомендациями в зависимости от диаметра колонны [1]:
H=(16-1)*0.6+0.6+1.5=11.1 м
В задачу теплового расчета входит определение расхода греющего пара в испарителе колонны и величину ее теплопередающей поверхности, а так же расхода охлаждающей воды в дефлегматор. Способ подвода и отвода тепла осуществляется за счет испарения части реакционной массы и за счет применения выносных поверхностей теплообмена.
Расход греющего пара в кубе колонны рассчитывается на основе составления и решения уравнения теплового баланса ректификационной колонны
где rводы– удельная теплота парообразования, Дж/кг ;
Р – расход верхнего продукта, кг/с;
W – расход нижнего продукта, кг/с;
Ropt– флегмовое число;
rcp– средняя удельная теплота фазового перехода, кДж/кг;
Qпот – тепловые потери (от 3% до 5% от тепла греющего пара) [1]:
где r –удельная теплота фазового перехода соответствующего компонента, Дж/кг [5];
tср = 95,4 ◦С ;
rнк = 90
rвк = 87
rср = 90*0,4+87*(1-0,4)= 88,2
rср = 88,2*4190 = 369558 Дж/кг.
Таблица 3.1-Теплоёмкости компонентов при различных температурах [2].
Низкокипящий ком-т. | Высококипящий ком-т. | ||||
Срf,Дж/кг*К | Срp,Дж/кг*К | Срw,Дж/кг*К | Срf,Дж/кг*К | Срp,Дж/кг*К | Срw,Дж/кг*К |
2077 | 1766 | 2480 | 2022 | 1718 | 2422 |
где
Ср - теплоёмкости компонентов при различных температурах, Дж/кг*К.
F : Cpсм = 2077*0,4+2022*(1-0,4) = 1763,3 Дж/кг*К;
P : Cpсм = 1766*0,95+1766(1-0,95) = 2044 Дж/кг*К;
W : Cpсм = 2480*0,05+2422(1-0,05) = 2424,9 Дж/кг*К.
где I - энтальпии потоков, Дж/кг;
Т – температура компонентов, ˚C.
IF = 1763,6*81 = 142851,6 Дж/кг;
IP = 2044*95,4 = 194997,6 Дж/кг;
IW = 2424,9*109,6 = 265769,04 Дж/кг.
Dг.п.*(Iг.п.- iк) = 0,558*(194997,6-142851,6) + 0,83(265769,04+142851,6) + +0,558*3,16*369558 = 1019886,829
Dг.п. = 1019886,829/(0,97*369558) = 2,84 кг/с.
Величину теплопередающей поверхности испарителя рассчитывают на основе уравнения теплопередачи [5]:
(25)
где Qпот– тепловые потери (от 3% до 5% от тепла греющего пара) [1];
Dг.п(Iг.п.-iк) – расход греющего пара, найденного по формуле (21);
K – коэффициент теплопередачи, выбирается по опытным данным в пределах от 300 до2500 Вт/м2*К;
ΔТср – средняя движущая сила процесса теплопередачи.
ΔТср определяется по разнице температур между температурой разделяемой смеси (в кубе колоны) и температурой насыщенного водяного пара при определённом давлении. Обычно средняя движущая сила процесса равна 30 ± 5ºС.
Температура кубового остатка равна Тw=109,6 ºС (см. выше).
Температура насыщенного водяного пара при давлении 3,0 кг/см2 составляет Т=135,9ºС .
∆Tср = 135,9 – 109,6 = 26,3 оС
|
ТºС ТºС
ΔТср
Рисунок 3.1 - Температурная диаграмма для определения средней движущей силы процесса теплопередачи.
При расчёте теплового баланса дефлегматора принимается, что пары дистиллята подвергаются полной конденсации. Тогда расход охлаждающей воды составит [5]:
(27)
где P – мольный расход продукта, кмоль/с;
R – оптимальное флегмовое число;
Mсмp – мольная масса продукта, кг/кмоль;
rp – удельная теплота фазового перехода, кДж/кг;
Cp – теплоёмкость воды, кДж/кг*К [2];
Cp=4190 Дж/кг*К
Tк, Tн– конечная и начальная температура охлаждения воды, ˚C. Обычно принимается Tн=12˚CTк=45˚C
где rp –удельная теплота фазового перехода определённого компонента, кДж/кг [2];