Смекни!
smekni.com

Схема автоматического регулирования продолжительности выпечки с коррекцией по температуре во второй зоне пекарной камеры (стр. 6 из 24)

Электрическая схема печи рассчитана на подключение сети трехфазного переменного тока напряжением 380/220 В. Для обогрева печи применяются типовые трубчатые электронагреватели, которые защищаются от коротких замыканий автоматическими выключателями типа А-3114 и АП50-ЗМТ. Электрическая схема печи предусматривает три цепи управления: температурным режимом печи, конвейером печи и вентилятором.

Цепь управления температурным режимом печи включает восемь одинаковых регулирующих контуров, состоящих из датчиков термопары ТХК-0515 (печь ХПС-25), термопары TXK.-XIII (печь ХПС-40), вторичных приборов (потенциометры ЭПВ2-11А) и исполнительных механизмов (магнитные пускатели серии ПА).

Пекарная камера печи разбита на четыре зоны, в каждой из которых производится самостоятельное регулирование и контроль температуры. В первой зоне печи (верх и низ) нагреватели разбиты на две группы, которые могут включаться вручную или в автоматическом режиме. В нижней части первой зоны, а также в остальных зонах нагреватели разбиты на две группы, которые управляются автоматически. При температуре в зоне ниже заданной автоматически включаются все нагреватели и по достижении нижнего предела заданной температуры одна из групп отключается, а при достижении верхнего предела заданной температуры отключается вторая группа.

Ручное управление предусматривает два режима работы: слабый нагрев, сильный нагрев. После разогрева печи до рабочего состояния систему управления печью переводят с ручного режима на автоматический. В соответствии с сортом выпекаемых изделий температура выпечки устанавливается на верхней шкале потенциометра для каждой зоны.

8. Печь ХПС-100 [10].

Она разработана Отраслевой лабораторией по хлебопекарным печам КТИППа и предназначена для выпечки широкого ассортимента хлеба и булочных изделий. В печи в целях унификации использованы узлы и отдельные элементы печей ПХК.

Сетчатый под печи крепится как и в печах ПХК к двум ведущим цепям. В зоне увлажнения сетчатый под перемещается по куполообразной траектории с регулируемым подъемом купола, что обеспечивает прохождение тестовых заготовок в зоне высокой влажности парового колпака.

Обогрев пекарной камеры осуществляется ТЭНами длиной 3 м.

В печи применена система секционной сборки. Секции имеют длину 4 м каждая и соединяются между собой компенсаторами температурных расширений.

Температурный контроль по длине пекарной камеры осуществляется в каждой тепловой зоне и зоне увлажнения.

9. Печь П-119м [10].

Она предназначена для выпечки широкого ассортимента хлебобулочных изделий, выпускается серийно Шебекинским машиностроительным заводом.

Печь является люлечно-подиковой тупиковой каркасно-панельного типа. Конвейер печи двухниточной, цепи конвейра втулочно-роликовые с шагом 140 мм. На них подвешено 18 люлек размером 1410 Х 285 мм. Печь снабжена съемными подиками размером 1402 Х 350 мм. Корпуса подшипников переднего приводного вала вынесены за пределы пекарной камеры и крепятся в нишах боковых панелей печи.

Обогрев печи осуществляется от нагревателей НВСЖ-2, 177/2,5 или другого типа. Мощность каждого нагревателя 2,5 кВт. Всего в печи 30 нагревателей, которые разбиты на три группы. Тепловой режим регулируется тремя термопарами как автоматически, так и вручную.

Боковые стенки печи и верхнее перекрытие изготовлены в виде пустотелых металлических панелей толщиной 250 мм, заполненных минеральной ватой. Между ветвями конвейера размещены вытеснительные короба, сокращающие объем парогазовой среды пекарной камеры. Тестовые заготовки увлажняются на первых четырех люльках.

В зоне увлажнения имеется дополнительная группа электронагревателей, которая включается при выпечка изделий требующих «обжарки» в начале выпечки.

10. Печь П-104 [10]

Печь люлечно-подиковая, тупиковая, изготовляется Шебекинским машзаводом. На двухниточном конвейере подвешено 34 люльки размером 1920 Х 350 мм, снабженных съемными подиками размером 1905 Х 360 мм.

Устройство печи П-104 идентично печи П-119М. Обогрев осуществляется 72 нагревателями НВСЖ-2,177/2,5 суммарной мощностью 180 кВт, которые разбиты на четыре зоны, где температура регулируется и контролируется самостоятельно. В первой зоне печи нагреватели разбиты на 3 группы, одна из которых может быть выключена. В других зонах нагреватели разбиты на две группы. Регулирование температуры автоматическое и ручной.

2.5 Предварительный выбор двигателя, способа управления и комплектного преобразователя

2.5.1 Выбор способа управления и двигателя

В настоящее время для приводов малой мощности (до 20 кВт) наибольшее применение нашли двигатели постоянного тока и асинхронные двигатели. Двигатели постоянного тока независимого возбуждения обладают отличными регулировочными свойствами. Это связано с тем, что магнитный поток регулируется независимо о тока якоря. В электроприводах с двигателями постоянного тока широкое распространение получили системы тиристорный преобразователь-двигатель постоянного тока (ТП-ДПТ). Это объясняется простотой и относительной дешевизной тиристорных преобразователей. ТП позволяют регулировать выходное напряжение в широких пределах и обладают высоким быстродействием. Эти обстоятельства позволяют строить на основе систем ТП-ДПТ высокопрочные системы регулирования технологических процессов (системы управления скоростью, положением и т.д.) Однако система ТП-ДПТ обладает рядом недостатков:

1. Недостатки двигателей постоянного тока в основном связаны с наличием коллекторного узла. ДПТ требуют тщательного технологического обслуживания (протирание коллектора, частые замены и регулирование щеток и т.д.), что увеличивает эксплуатационные расходы и снижает надежность машины.

2. ДПТ имеют плохие массогабаритные показатели, что в конечном итоге увеличивает цену двигателей. ДПТ дороже асинхронных двигателей примерно в три раза.

3. В связи с наличием коллекторного узда В ДПТ налагается ограничение на скорость нарастания тока, что уменьшает быстродействие электропривода.

4. Коэффициент мощности тиристорных преобразователей зависит от узла регулирования, поэтому при регулировании скорости вниз от номинальной увеличивает доля внешних гармоник, что ведет к снижению коэффициента использования двигателя, увеличению потель мощности и засорению питающей среды высшими гармониками (помехами).

Самым простым и надежным электромеханическим преобразователем энергии является асинхронный двигатель. Асинхронные двигатели обладают рядом преимуществ перед ДПТ:

1. Асинхронные двигатели просты и надежны в эксплуатации, требуют минимум эксплуатационных расходов.

2. Асинхронные двигатели имеют лучшие массогабаритные показатели, поэтому наиболее дешевы.

3. Асинхронные двигатели имеют больший КПД по сравнению с ДПТ при той же мощности.

4. Асинхронные двигатели выдерживают большие перегрузки по сравнению с ДПТ, что позволяет получить более высокое быстродействие.

Сравнивая достоинства и недостатки асинхронных двигателей и двигателей постоянного тока, для проектируемой установки выбираем асинхронный двигатель. Этот выбор обусловлен перечисленными преимуществами, а так же тем, что такое решение соответствует пункту 5 требований к электроприводу.

Рассмотрим самые распространенные способы управления АД.

1. Регулирование скорости вращения АД введением добавочного сопротивления в цепь ротора.

Один из распространенных способов регулирования скорости, тока и момента АД с фазным ротором связан с введением и изменением дополнительных резисторов в цепи его ротора. Схема, в которой реализуется этот способ регулирования, приведена на рис. 2.6, а. Основным достоинством этого способа является простота реализации, что определило его широкое применение в ряде электроприводов.

Для построения семейства получаемых при этом способе искусственных механических характеристик проведем анализ их характерных точек.

а) скорость идеального холостого хода АД ω0 при регулировании R не изменяется;

б) максимальный (критический) момент двигателя Мк также остается неизменным;

в) критическое скольжение Sк увеличивается при увеличении R.

Выполненный анализ позволяет представить искусственные реостатные характеристики в виде семейства кривых, показанного на рис. 2.6, б. Использование этих характеристик для регулирования скорости АД характеризуется такими же показателями, что и для ДПТ независимого возбуждения. Диапазон регулирования скорости небольшой - около 2-3, что определяется снижением жесткости характеристик и ростом потерь по мере увеличения диапазона регулирования скорости.

Плавность регулирования при реостатном регулировании небольшая и определяется плавностью изменения дополнительного резистора R. Скорость АД изменяется только вниз от основной. Экономичность способа определяется стоимостью используемых средств регулирования и расходами при эксплуатации электропривода. Затраты, связанные с созданием данной системы электропривода, невелики, так как для регулирования обычно используются простые и дешевые ящики металлических резисторов. В то же время при эксплуатации этой системы затраты велики, поскольку значительны потери энергии.

Электрические потери в роторной цепи ∆Р2, называемые потерями скольжения, определяются выражением

∆Р2 = Р1 – Р2 = М*ω0 – М*ω = М*ω0*s =Р1*s.

Чем больше скольжение s, тем больше потери в роторной цепи, поэтому реализация большого диапазона регулирования скорости приводит к значительным потерям энергии и снижению КПД электропривода.

Регулирование скорости этим способом применяется в тех случаях, когда требуется небольшой диапазон регулирования скорости и работа на пониженных скоростях непродолжительна. Например, этот способ нашел широкое применение в электроприводе ряда подъемно-транспортных машин и механизмов.