Анализ выражения (1.69) (предположив Рк= const) позволяет получить аналитическую зависимость объемных потерь насоса от величины зазора и первоначального натяга:
где
На рис. 27 показана зависимость объемных потерь насоса 1ВВ, 1,6/16 от величины первоначального натяга при перекачке воды.
Анализ результатов испытаний объясняет заметный разброс значений подачи насосов серийного производства, в которых по технологическим соображениям первоначальный натяг имеет отклонение ±0,1 мм.
Результаты теоретических и экспериментальных исследований показали:
1. Величина первоначального натяга оказывает большое влияние на энергетические показатели одновинтовых насосов.
Для принятых оптимальных значений перепадов межвитковых давлений (1.61) имеет место интервал значений первоначального натяга (1.62), при котором рабочие органы насоса работают с максимальным значением КПД, достигающим 70–75% для насоса 1ВВ 1,6 и 55–65% для насоса 1ВВ 0,4.
2. С повышением величины 8о: уменьшается зазор в проточной части контактной линии, вследствие чего уменьшаются объемные потери; увеличивается нормальная сила и уменьшается удельное давление, что вызывает увеличение механических потерь.
3. При натяге 8о > 5о опт наблюдается резкое понижение общего КПД насоса.
Расчет золотника предохранительного клапана на прочность и устойчивость
Рабочее давление при котором работает золотника
p=ρgH,
где ρ – плотность нефти
g – ускорение свободного падения
H – напор создаваемый насосом.
p=950·9,8·1000=9,31МПа
Усилие сжатия золотника со стороны поршня
Fсж1=π·p·(D2/4)
где р – рабочее давление при котором работает золотник
D – диаметр поршня
Fсж1 = 3,14·9,31·106·0,0362 / 4 = 9,5кН
Усилие сжатия золотника с другой стороны
Fсж2=π·p·(d12/4)
где d1 – диаметр золотника с другого конца
Fсж2 = 3,14·9,31·106·0,0182 / 4 = 2,4кН
Так как центральная часть золотника имеет наименьший диаметр, в нем будут возникать наибольшие напряжения сжатия, определим их
σсж = Fсж /f2
где f2 – площадь сечения по внутреннему диаметру
f2 = π·d2 2 /4 = 3,14·0,0142 / 4 = 15,4·10-5 м2
Fсж = Fсж1+ Fсж2 = 9,5+2,4 = 11,9кН
σсж = 11,9·103 / 15,4·10-5 = 77,3 МПа
Выбираем сталь марки ВСт2пс для которой σв =330МПа
Отсюда находим коэффициент запаса на прочность
n = σв/ σcж =330 / 77,3 = 4,3
Запас прочности по усталости:
na =σ1ּε / kσּ σсж
kσ - эффективный коэффициент концентрации напряжения
kσ = 1
σ1 - предел выносливости при сжатии для золотника двустороннего действия.
σ1 = 0,45ּσв
σ1 =0,45ּ330 = 148,5 МПа
ε – масштабный фактор
ε = 1,5
na =148,5ּ1,5 / 77,3 = 2,9
Устойчивость золотника (продольный изгиб)
λ = l /imin
l – свободная длина золотника
imin = (J/f)1/2 J = π·d4/64 f = π·d2/4
imin =d/4
imin - min радиус инерции штока
λ = 4l /d
λ=4ּ95 / 14 = 27,14
λ<105, по формуле Ясинского
σкр =335–0,6 λ
σкр = 335 – 0,6 77,3 = 288,62МПа
При σкр = 288,6МПа золотник потеряет устойчивость
Запас устойчивости,
nу= σср/ σсж = 288,6/77,3 = 3,73
Список используемой литературы
1. R. Moineau. Gear Mechanism. USA Patent №1892217, 27.04.1931.
2. Балденко Д.Ф., Бидман М.Г., Калишевский В.Л. и др. Винтовые насосы. М., Машиностроение, 1981.
3. Балденко Д.Ф. Винтовые гидравлические машины. Машины и нефтяное оборудование. М., ВНИИОЭНГ, 1979, №9.
4. Балденко Д.Ф., Балденко Ф.Д. Перспективы применения и критерии эффективности одновинтовых гидромашин в нефтяной промышленности. Строительство нефтяных и газовых скважин на суше и на море. М., ВНИИОЭНГ, 1995, №4–5.
5. Ратов А.М., Хейфец А.С. Одновинтовые скважинные электронасосы в Советском Союзе и за рубежом. М., ЦИНТИхимнефтемаш, 1979.
6. Балденко Д.Ф., Балденко Ф.Д., Власов А.В., Хабецкая В.А., Шардаков М.В. Параметрический ряд многозаходных скважинных винтовых насосов. Нефтепромысловое дело. М., ВНИИОЭНГ, 2001, №8.
7. Коротаев Ю.А. Прогрессивный инструмент для формообразования зубьев многозаходных героторных механизмов винтовых забойных двигателей и насосов. М., ВНИИОЭНГ, 2002.
8. Балденко Д.Ф., Балденко Ф.Д. Перспективы создания гидроприводных винтовых насосных установок для добычи нефти. Нефтяное хозяйство, 2002, №3.
9. Балденко Ф.Д., Дроздов А.Н., Ламбин Д.Н. Характеристики одновинтовых гидромашин на газожидкостной смеси. Строительство нефтяных и газовых скважин на суше и на море. М., ВНИИОЭНГ, 2003, №4.
10. Пятов И.С., Васильева С.Н. и др. Комбинированный метод модификации фрикционных свойств резин. Каучук и резина, 1999, №5
11. Расчет ведется по книге Ивановский В.Н., Дарищев В.И., Сабиров А.А. и др. «Насосные установки для добычи нефти» стр. 360–380.
12. Internet www.livgidromash.ru