Зростання
Кружечками на рис. 2 представлені експериментальні дані, отримані нами для вольфрамового дроту тих же геометричних розмірів.
Спостерігається гарна згода експериментальних і розрахун- кових стаціонарних низько- температурних режимів тепломасообміну.
В даному розділі надаються результати експериментальних досліджень впливу геометричних розмірів дротику (діаметр та довжина) на стійкі та критичні високо- і низькотемпературні його стани. Доказано, що збільшення діаметру вольфрамового зразка приводить до зростання критичних значень сили струму, що визначають його запалювання та потухання. Цей факт пояснюється тим, що при збільшенні діаметру дротика зменшується його опір і для збереження умови стаціонарності необхідно збільшити силу струму. Довжина дротика впливає тільки на тепловой потік теплопровідністю до контактів (
Показано, що в областях малих (<40 мкм) і великих (>1000 мкм) діаметрів дротику екстремуми на залежностях
В результаті розрахунків стаціонарних режимів тепломасообміну і окислення вольфрамового дротика без теплообміну випромінюванням зі стінками установки виявлено інтервал його діаметрів, для якого зникають критичні режими затухання. Залежність
Рис.3. Залежність
Таким чином, знайдено інтервал діаметрів вольфра- мового провідника, де недопустимо зневажання в фізико-математичнихмоделях теплообміном випромінюван-ням.
Із рис. 3 видно, що для визначення критичних параметрів запалювання (т.
з якого можна визначити критичні значення товщини оксидної плівки, вище яких, при заданій силі струму, високотемпературні режими дротика не спостерігаються.
Порівняльний аналіз критичних умов запалювання вольфрамових провідників різних діаметрів представлено на рис. 4. Результати розрахунку критичних значень температур
Рис.4. Залежності критичних значень температури вольфрамового дротика і товщини оксидного шару від його діаметру. =1 А,
=288 К,
=10 см,
=0,
=0, ооо–наші експериментальні дані.
Встановлено, що стефанівська течія приводить до збільшення критичного значення товщини оксидної плівки, при якій частка потухає. Це пояснюється тим, що у випадку стефанівської течії зростають концентрація кисню на поверхні частки та її температура.
4 Результати дослідження. Висновки
1. Експериментально досліджено високотемпературні режими тепломасообміну та окислення вольфрамового дротику, що нагрівається електричним струмом. Визначена стадійність в здійсненні його високотемпературних станів: інертне нагрівання (1 стадія); високотемпературний тепломасообмін та окислення (2 стадія); плавління та випаровування окислів, збільшення, внаслідок цього, швидкості хімічного реагування (3 стадія).
2. розроблена фізико-математична модель тепломасообміну та окислення вольфрамових дротиків, які нагріваються електричним струмом, з урахуванням випаровування оксидної плівки з їх поверхні, результати розрахунків по якій добре погоджуються з експериментальними даними. Встановлено зменшення товщини оксидної плівки на поверхні провідника після досягнення ним максимального значення, що свідчить прозначну роль випаровування в процесах високотемпературного тепломасообмінута окислення вольфраму.
3.Вивчено вплив геометричних розмірів провідника на стійкі і критичні низько- та високотемпературні режими тепломасообміну в повітрі. Встановлено, що збільшення діаметру провідника приводить до значного зростання критичних значень сили струму, які визначають його запалювання і потухання, зменшенню стаціонарної температури в низько- та високотемпературних станах. Знайдено критичні параметри виродження критичних умов (товщина окислу, діаметр провідника, сила струму), при яких спостерігаються безкризові переходи до високотемпературних режимів окислення.
4. Теоретичнотаекспериментально вивчена роль теплообміну випромінюванням в процесах високотемпературного окислення вольфрамових провідників різних діаметрів. Вперше встановлено незвичайний факт неможливості потухання палаючих провідників визначених діаметрів при зменьшенні сили струму у відсутності тепловтрат випромінюванням до стінок реакційного устрою. Це дало змогу визначити інтервал діаметрів вольфрамового провідника, для якого значна роль тепловтрат випромінюванням і зневажати ними при оцінках стійких та критичних режимів недопустимо. Доказано, що врахування тепловтрат випромінюванням приводить до значного зменьшення критичних параметрів виродження в області великих діаметрів провідника.