При одновременном действии напряжений x, y и z на главных площадках (т. е. при отсутствии касательных напряжений) потенциальная энергия равна сумме работ, совершаемых силами xdydz, ydxdz, zdxdy на соответствующих перемещениях xdx, ydy, zdz. Удельная потенциальная энергия равна
В частном случае чистого сдвига в плоскости Оху, изображенном на рис. 5, сила xydxdz совершает работу на перемещении xydy. Соответствующая этому случаю удельная потенциальная энергия деформации равна
Подобные соотношения будут иметь место при сдвиге в других плоскостях.
В общем случае напряженно-деформированного состояния будем иметь
Если деформации выразить через напряжения с помощью соотношений упругости (5) и (6), то получим эквивалентную форму записи через компоненты тензора напряжений
Выразив напряжения через деформации с использованием соотношений (6) и (10), получим еще одну форму записи для Ф - через компоненты тензора деформаций
Еще одну форму записи для удельной потенциальной энергии деформации получим, разложив тензоры напряжений и деформаций на шаровые тензоры и девиаторы. В результате (11) можно привести к одной из форм
Здесь введены обозначения для - интенсивности касательных напряжений и - интенсивности деформаций сдвига, которые выражаются через вторые инварианты J2(d) и J2(d) девиаторов тензора напряжений и тензора деформаций следующим образом:
Первые слагаемые в (13) соответствуют произведению шаровых составляющих тензоров напряжений и деформаций, а вторые - произведению девиаторных составляющих. Так как шаровой тензор характеризует изменение объема, а девиатор - изменение формы, то соотношения (13) можно интерпретировать как разложение удельной потенциальной энергии на две составляющие: Ф=Ф0 + Фф, где Ф0 соответствует изменению объема без изменения формы, а Фф - изменению формы без изменения объема. Первая составляющая будет вычисляться через компоненты тензора напряжений следующим образом:
Удельную потенциальную энергию изменения формы проще найти не через интенсивность касательных напряжений, а как разность Ф - Ф0. Вычитая (14) из (12), после преобразований получим
8. Механические характеристики конструкционных материалов
Ключевые слова: упругое состояние; пластичное состояние; пределы пропорциональности, упругости, текучести, прочности.
Механические характеристики определяются следующими факторами:
веществом, его структурой и свойствами;
конструктивными особенностями элемента, т. е, размерами, формой, наличием концентраторов, состоянием поверхности;
условиями при нагружении: температурой, скоростью, повторяемостью нагрузки и др.
Конструкционные материалы в процессе деформирования вплоть до разрушения ведут себя по разному. Пластичное поведение характеризуется существенным изменением формы и размеров, при этом к моменту разрушения развиваются значительные деформации, не исчезающие после снятия нагрузки. Такие материалы называют пластичными. При хрупком поведении разрушение наступает при весьма малых деформациях, и материалы с такими свойствами называют хрупкими. Однако одни и те же конструкционные материалы, находящиеся в различных условиях деформирования, ведут себя по разному: при одних условиях проявляют себя как пластичные материалы, при других - как хрупкие. В связи с этим, основные макромеханические характеристики материалов - упругость, пластичность, вязкость и др. правильнее относить не к их свойствам, а к состояниям материала.
Механические состояния деформирунмых тел
В упругом состоянии деформации обратимы, и вся энергия, затраченная на деформирование, при разгрузке возвращается (диссипация энергии отсутствует). Для любого твердого тела процесс деформирования начинается с упругой деформации. Изотропное тело имеет две константы упругости - модуль упругости Е и коэффициент Пуассона . Для анизотропных тел число упругих констант в общем случае равно 21. Из основных констант упругости можно получить их производные - модуль сдвига G, модуль объемной реформации К и постоянную Ламе .
Вязкое сопротивление - в некотором смысле противоположно упругому - работа внешних сил, уравновешенных силами вязкого сопротивления, полностью рассеивается в виде тепла.
Вязкое сопротивление определяется величиной касательной силы, необходимой для поддержания ламинарного скольжения слоев, или течения с определенной скоростью. Таким образом вязкость можно определить как сопротивление течению.
Представление о вязкоупругой деформации дает поведение моделей, сочетающих свойства вязкости и упругости в такой последовательности: при нагружении тела в нем возникает мгновенная упругая деформация, подчиняющаяся закону Гука; далее при том же максимальном напряжении наблюдается вязкая деформация, подчиняющаяся закону Ньютона.
Наиболее распространенными в теории линейной вязко-упругости являются реологические модели Максвелла и Фойгта, дающие связь между напряжениями и деформациями и скоростями их изменения:
тде - коэффициент вязкости.
Пластическое состояние характеризуется наличием остаточных деформаций, фиксируемых после снятия внешних нагрузок. Объем тела при пластической деформации не изменяется; условие постоянства объема записывается в виде
В случае, когда все напряжения изменяются пропорционально одной из составляющих, в процессе пластической деформации направления главных деформаций совпадают с направлениями главных нормальных напряжений, направления максимальных сдвигов - с направлениями максимальных касательных напряжений, а главные направления девиатора напряжений - с главными направлениями девиатора деформаций.
Одной из распространенных моделей поведения материала при упруго-пластических деформациях является модель пластичности, основанная на деформационной теории Генки-Ильюшина, описываемая уравнениями:
- безразмерный коэффициент, называемый параметром пластичности (с точностью до множителя он совпадает с интенсивностью касательных напряжений). При =1 эта модель описывает поведение упругого материала.
Высокоэластическое состояние - наиболее характерно для полимеров; особенностями этого состояния являются большая изменяемость формы и деформирование без изменения объема. Для материалов, находящихся в высокоэластическом состоянии, наблюдается существенная зависимость их свойств от длительности и скорости нагружения, температуры и т. д.
Состояние разрушения - состояние, при котором за счет интенсивного развития трещин в материале тела начинается нарушение его сплошности и непрерывности. Физический процесс разрушения материала представляется в виде двух основных стадий-стадии рассеянных разрушений (зарождение и развитие микроскопических трещин) и стадии развития магистральной трещины. Очаги зарождения микротрещин распределены по всему объему материала, находящегося в однородном напряженном состоянии, достаточно равномерно. Относительная длительность первой и второй стадии разрушения зависит от свойств материала, характера напряженного состояния и условий нагружения.
Диаграммы упруго-пластического деформирования конструкционных материалов
Основным опытом для определения механических характеристик конструкционных материалов является опыт на растяжение призматического образца центрально приложенной силой, направленной по продольной оси; при этом в средней части образца реализуется однородное напряженное состояние. Форма, размеры образца и методика проведения испытаний определяются соответствующими стандартами, например, ГОСТ 34643-81, ГОСТ 1497-73. По результатам испытаний строится зависимость