Основное преимущество оставшегося напряжения как критерия релаксации заключается в том, что величина
Падение напряжения за обусловленный промежуток времени τ (
Косвенной характеристикой релаксации, в принципе аналогичной
Вместе с тем величина
Ресурс напряжений. В ряде случаев снижение напряжения в процессе релаксации удобно представлять в относительных значениях от начального напряжения. Относительная величина оставшихся напряжений, выраженная в процентах, получила название «ресурса напряжений»:
Скорость релаксации. Различают «истинную», «среднюю» и «логарифмическую» скорости релаксации.
Истинную (или «мгновенную») скорость релаксации в любой точке кривой напряжение — время
практически не определяют. Обычно подсчитывают среднюю скорость релаксации (
Величину
Логарифмическая скорость релаксации определяется уравнением
и выражается в величинах
под названием «время релаксации» ранее также применялась в качестве характеристики релаксации.
И.А. Одинг и Ф.И. Алешкин установили на железе Армко прямолинейную (в логарифмической системе координат) зависимость скорости релаксации
Предел релаксации. Этот термин применяют, по крайней мере, в трех вариантах: истинный (физический) предел релаксации напряжений; условное напряжение для заданной скорости релаксации; условный (технический) предел релаксации (по напряжению).
Под истинным (физическим, теоретическим) пределом релаксации напряжений по аналогии с физическим пределом ползучести понимают максимальное начальное напряжение, еще не вызывающее релаксации. Эта характеристика практически не применяется, и существование физического предела релаксации пока не имеет достаточного экспериментального подтверждения.
Релаксационная стойкость сплавов зависит не только от химического состава, но и от их структуры. Можно отметить общие для всех типов сплавов особенности структурного состояния, которые (прямо или косвенно) влияют на процесс релаксации напряжений при обычной и повышенной температурах. Сюда относятся: величина зерна твердого раствора, его стабильность, количество и размеры частиц избыточных фаз, их взаиморасположение и взаимодействие. Перечисленные структурные факторы регулируются термической обработкой.
Вместе с тем следует учитывать, что длительное пребывание сплава при повышенных температурах может существенно изменить исходное структурное состояние, созданное термической обработкой.
Термомеханическая обработка металлов и сплавов, представляющая собой сочетание пластического деформирования (наклепа) и термической обработки, является прогрессивным технологическим процессом, позволяющим повышать уровень механических свойств стали и других сплавов, в том числе и жаропрочных.
Возможность упрочнения металлических сплавов сочетанием механического и фазового наклепа отмечалась еще в 1943 г. в теоретических работах С.Т. Конобеевского. Реальная возможность применения термомеханической обработки для повышения жаропрочных свойств впервые показана В.Д. Садовским с сотрудниками. В дальнейшем было проведено значительное число экспериментальных исследований, исчерпывающий обзор которых можно найти в труде М. Л. Бернштейна [14].
Многочисленные способы такой обработки могут быть отнесены к трем основным видам: НТМО (низкотемпературная термомеханическая обработка), ВТМО (высокотемпературная термомеханическая обработка) и МТО (механико-термическая обработка).
Различные варианты этих обработок включают операции пластического деформирования, которые проводят при самых разнообразных степенях деформации и различных температурах, и собственно термическую обработку основные параметры которой (температура, время, скорости нагрева и охлаждения) могут колебаться в широких пределах. В результате получаются самые различные сочетания механического наклепа, рекристаллизации, возврата и старения, суммарное влияние которых на процесс релаксации напряжений может быть различно и зависит, кроме того, от конкретных рабочих условий — длительности и температуры.
При комнатной, пониженной и умеренно повышенной температурах любая термомеханическая обработка (так же, как и холодный наклеп), как правило, повышает релаксационную стойкость металлов и сплавов. Это объясняют тем, что ТМО приводит к созданию в структуре поликристаллических металлов равномерно распределенных внутренних дислокационных барьеров, препятствующих движению дислокаций. Одновременно увеличивается плотность дислокаций, причем последняя после НМТО (при одинаковой степени деформации) почти на порядок выше, чем после ВТМО.
Положительное влияние ТМО может быть показана на примере низколегированной стали 35ГС, исследованной в работе. ВТМО заключалась в деформировании на 30% при 900°С с последующими закалкой и отпуском; Испытание на релаксацию проводилось при комнатной температуре кольцевым методом, при достаточно высоких значениях начального напряжения: 950, 1200, 1400 и 1600 МН/м2 (95, 120, 140, 160 кг/мм2). Как видно из рисунка 19, падение напряжения у образцов, подвергнутых ВТМО, меньше, чем у закаленных и отпущенных образцов. Эта закономерность справедлива как для начального периода релаксации, так и по истечении 200—400 ч.
Кроме того, из полученных данных следует, что ВТМО приводит к более стабильной структуре стали: аномальные пики (на начальном участке) кривых для закаленных образцов, которые авторы объясняют распадом остаточного аустенита и выделением углерода из твердого раствора, на кривых, отвечающих ВТМО, отсутствуют.
Благоприятное влияние предварительной пластической деформации на сопротивление релаксации у перлитных сталей при комнатной и умеренно повышенных температурах не вызывает сомнений. Так, например, холодное деформирование углеродистой стали при значительных обжатиях (до 80%), но низком начальном напряжении [