Если задаться некоторой величиной

, то при различных значениях

она будет достигнута через различные промежутки времени τ. Чем выше

, тем короче время, необходимое для достижения заданной величины

, и наоборот, хотя здесь нельзя установить строгой пропорциональности.
Иная картина наблюдается во II периоде, когда процесс релаксации идет с более или менее установившейся скоростью. Здесь влияние

на интенсивность релаксации напряжения практически отсутствует, во всяком случае, при температурах ниже 0,5 Т
пл. Скорости релаксации при разных значениях

, как правило, весьма близки. Кривые σ—τ на втором участке подобны и эквидистантны, отличаясь лишь по взаимоположению относительно оси ординат, т. е. по уровню оставшихся в данный момент времени напряжений. Это хорошо иллюстрируется приведенным на рисунке 15 семейством первичных кривых релаксации жаропрочного никельхромового сплава при четырех значениях

.
При более высоких температурах (>0,5

) первичные кривые σ—τ часто утрачивают подобие, и скорости релаксации при разных значениях сто становятся непостоянными.
Зависимость оставшегося (конечного) напряжения

от начального определяется влиянием последнего на протекание процесса релаксации в обоих периодах. При температурах, не превышающих 0,5

, степень увеличения интенсивности процесса релаксации в I периоде за счет повышения величины

(в пределах до 0,8

) обычно такова, что в конечном счете более высокое начальное напряжение приводит к более высокому оставшемуся напряжению.
Взаимосвязь начального и оставшегося (конечного) напряжений (или начального напряжения и падения напряжения

) наиболее наглядно представлена графиками

—

и

—

рисунок16. Такие кривые строят для переменных значений времени релаксации τ (либо температуры t). При t=const,

const эта зависимость изображается пучком расходящихся прямых для разных значений τ, проходящих через нулевую точку осей координат рисунка 16.
Следует отметить, что начало пучка прямых в нулевой точке исключает понятие «условного предела релаксации» и возможность его графического определения. Более правильны схемы рисунок 16,в,г, где пучок прямых пересекается с осью начального напряжения в некоторой точке, отвечающей пределу релаксации.

Рисунок 16 - Схематические зависимости

= f (

) (а, в, д) и

= f (

) (б,г,е)
Не получило подтверждения и высказанное в свое время Я. С. Гинцбургом [15] положение, что зависимость

= f(

) подчиняется степенному закону и может быть описана уравнением

= a(

)
р. В действительности при построении графиков

—

в двойной логарифмической системе координат в большинстве случаев не наблюдается прямолинейности кривых.
Приведенные выше экспериментальные данные и основные закономерности следует учитывать при выборе начальных напряжений для деталей, предназначенных для работы в условиях релаксации напряжений. Очевидно, что более высокие начальные напряжения, как правило, обеспечивают и более высокие значения оставшихся (конечных) напряжений.
Однако при этом величина

не должна превышать величину предела упругости материала при данной температуре. При назначении начальных напряжений в практике обычно ориентируются не на предел упругости, а на предел текучести

, допуская, как правило,

0.8

(за исключением особых случаев, о которых будет сказано ниже).
Таким образом, начальное напряжение релаксации зависит от уровня упругих свойств материала. Исходя из этого, некоторые авторы выражают

в долях от величин

или

, считая, что в случае необходимости сопоставить релаксационную стойкость ряда материалов целесообразно проводить сравнительные испытания не при одинаковых абсолютных значениях

, а при одинаковой величине отношения

/

(или

/

).
Такой подход, без сомнения, является правильным, так как позволяет более строго сопоставлять релаксационную стойкость серии материалов, сильно различающихся по своим механическим свойствам (

,

,

) в определенном диапазоне температур.
Л.П. Никитиной [13] предложена методика выбора начальных напряжений, основанная на изложенном принципе и дающая широкие возможности сравнительной оценки разнообразных материалов по их сопротивляемости релаксации напряжения при разных температурах, притом с затратой минимального числа образцов, а следовательно, и общего времени испытаний.
До сих пор мы рассматривали влияние начальных напряжений на зависимости

=f(

) либо

= f (

) при начальных напряжениях, не превышающих

(

), как это наблюдается в крепежных деталях.
В определенных условиях нередко отмечается релаксация при

, которая может реализоваться при растягивающих нагрузках (но не при испытаниях кольцевых образцов). Релаксация напряжений при

, например, наблюдалась в испытаниях на термическую усталость с выдержками при максимальной температуре цикла, а также в специальных опытах.