Смекни!
smekni.com

Реконструкция сталеплавильного производства ОХМК с целью производства трубных марок сталей повышенной прочности (стр. 5 из 17)

ОАО «НОСТА» (ОХМК) предусматривает:

– решение проблемы изготовления труб с высокими потребительскими свойствами;

– сокращение закупок труб по импорту;

– расширение поставок труб на экспорт;

– улучшение внутрихозяйственной деятельности предприятия и создания условий по организации дополнительных рабочих мест.

В технологической линии стана «2800» смонтирована новая установка ультразвукового контроля немецкой фирмы «Нукем».

Установка будет обеспечивать контроль по всей площади листа с выдачей информации о наличии и расположении выявленных дефектов на экран дисплея. Листы с дефектами, превышающими установленные нормы, будут обрабатываться и переводится в другие категории качества.

В соответствии с современными требованиями к прокатной продукции ультразвуковой контроль является обязательным при аттестации и сертификации листовой стали и служит одним из основных элементов технологии её производства. Поэтому новая установка позволяет выпускать продукцию, отвечающую требованиям мировых стандартов качества.

24. 02. 97 года подписан контракт между ОАО «НОСТА» (ОХМК) и немецкой фирмой «Маннесманн Демаг Хюттентехник» на поставку российским металлургам оборудования комплекса по производству штрипсов для труб в «северном» исполнении на сумму 216 млн. немецких марок. Инвестиционный проект указанного комплекса предусматривает сооружение в электросталеплавильном цехе современной высокотехнологической установки «ковш-печь» производительностью 850 тыс. тонн жидкой стали в год, обеспечивающей выпуск стали с содержанием серы не более 0,005% и слябовой МНЛЗ производительностью 800 тыс. тонн слябов в год, а также модернизацию оборудования стана «2800», которая обеспечит производство штрипсов для труб большого диаметра в «северном» исполнении.

Реализация проекта позволит начать выпуск в России труб большого диаметра для магистральных газонефтепроводов высокого давления в «северном» исполнении, которые в настоящее время приобретаются по импорту.

В электросталеплавильном цехе введена в эксплуатацию установка «ковш-печь» №1 производительностью 450 тыс. тонн стали в год, Оборудование установки изготовлено в АО «Сибэлектротерм».

В комплексе с установкой «ковш-печь» будут внедрены новая технология футеровки сталеразливочных ковшей и современные огнеупорные материалы для её изготовления, которые будут поставлены по контракту с австрийской фирмой «Файнч-Радекс». Реализация этого проекта обеспечит повышение стойкости футеровки сталеразливочных ковшей с 20 плавок до 100 плавок при эксплуатации ковшей без установки «ковш-печь» и с 20 плавок до 40 плавок при эксплуатации ковшей на установке «ковш-печь».

Проведение реконструкции и технического перевооружения сталеплавильного производства имеет целью снижение общих производственных издержек производства стали, что окажет позитивное влияние на экономические показатели комбината, а также создаст предпосылки для производства импортозаменяющей продукции.

Для достижения указанных целей в начале нового тысячелетия предусмотрены следующие мероприятия:

– реконструкция существующих электросталеплавильных печей с увеличением их ёмкости до 130 т. и доведением годовой производительности до 1,5 млн. т.;

– реконструкция блюмовой МНЛЗ №1 для повышения производительности и улучшения качества металла;

– сооружения нового отделения непрерывной разливки стали и агрегата «ковш-печь» в мартеновском цехе;

– сооружение к 2003 г. одной двухванной электросталеплавильной печи годовой производительностью 1,5 млн. т. взамен двухванных и мартеновских печей.

В ближайшем будущем в связи с необходимостью обновления существующих и строительством новых магистральных газонефтепроводов ожидается оживление российского рынка труб большого диаметра. Комбинат намерен занять свою нишу на рынке труб большого диаметра, для чего предусматривается производство двухшовных прямошовных электросварных труб в «северном» исполнении с наружной изоляцией, предназначенных для строительства наземных, подземных и подводных газонефтепроводов всех категорий надёжности, рассчитанных на давление 5,4 – 7,4 МПа.

Сооружение нового трубоэлектросварочного цеха производственной мощностью

500 тыс. т. труб в год создаст условия для выпуска высокорентабельной продукции, которая может быть полностью реализована на рынке России по конкурентоспособным ценам /2/.

1.2 Комплексное рафинирование металла с целью получения ультранизкого содержания вредных примесей и существенного повышения эксплуатационных характеристик готового металла

1.2.1 Рафинирование металла от азота

Известно, что наличие азота в металле вызывает понижение пластичности при деформации, повышение твёрдости, пределов текучести и прочности, связанных с деформационным старением и охрупчиванием.

Поведение азота при выплавке стали с использованием металлического лома в шихте изучали многие исследователи, которыми установлено, что после проплавления шихты и проведения окислительного периода концентрация азота зависит от химсостава стали, конкретных условий ведения плавки и от количества окисленного углерода.

При выпуске расплава из печи и его продувке происходит значительное повышение концентрации азота на 0,002 – 0,004%. Это связано с взаимодействием расплава с атмосферой и увеличением интенсивности поступления азота из шлака в металл. Следует отметить, что при более низких температурах выпуска расплава из печи (<1640 °С), средний прирост содержания азота 0,001 – 0,002% был существенно ниже, чем при температурах выше 1640 °С 0,002 – 0,0035% /3/.

В процессе разливки опытных плавок на УНРС концентрация азота возрастала на 0,002 – 0,004%. Таким образом на последующих стадиях процесса, начиная с выпуска в ковш и заканчивая разливкой металла, происходит значительное увеличение содержания азота в сталях.

Продувка стали аргоном – один из самых распространённых способов внепечного рафинирования. Одной из задач продувки является снижение содержания газов в металле – кислорода и азота.

При дегазации раскисленной стали удаление азота при всех способах нестабильно и незначительно, при продувке стали на воздухе или в вакууме содержание азота изменяется на 8 – 13% /3/. Дегазация нераскисленных сталей практически не сопровождается удалением азота до момента ввода раскислителей, после чего начинается период деазотации, что объясняется образованием нитридов титана и алюминия и их удалением пузырьками аргона. Однако удаление азота в процессе продувки расплава аргоном неэффективно даже при использовании большого (более 2 м3/т) расхода аргона.

Более целесообразно, по данным многочисленных исследований, обработка стали в вакууме, так как основным назначением процесса внепечного вакуумирования является дегазация металла – снижение содержания азота и водорода.

При вакуумной обработке стабильно достигается низкая концентрация водорода, отвечающая близкому парциальному давлению водорода в газовой фазе. Снижение азота при его исходном содержании 0,003 – 0,006% незначительно и составляет в среднем 4%, а при более высоком содержании 0,015 – 0,028% составляет 15 – 29%. Таким образом, снижение азота зависит от его исходного содержания, а конечная концентрация не достигает расчётных значений, отвечающих закону Сивертса.

Обобщающий анализ данных показал, что снижение концентрации азота достигает лишь 10 – 20% при вакуумировании частично или полностью раскисленного металла. Более высокое (до 40%) снижение концентрации азота наблюдали только при вакуумной обработке нераскисленного металла /3/. Исследователи объясняют это удалением азота с оксидом углерода, образующегося при взаимодействии углерода и кислорода. В тоже время удаление азота из нераскисленного металла должно тормозиться наличием растворённого кислорода. Кислород, являясь поверхностно-активным элементом, защищает металл от насыщения азотом. Поэтому более позднее раскисление расплава алюминием способствует получению в металле низкой концентрации азота, что необходимо учитывать при выборе оптимального режима раскисления для снижения азотации металла в процессе внепечной обработки. В этой связи необходимо рассматривать процесс удаления азота из нераскисленного металла с пузырьками СО, а после раскисления с поверхности взаимодействия металл – газовая фаза.

1.2.2 Использование порошковой проволоки

Современное сталеплавильное производство должно располагать техническими средствами для осуществления вторичной (внепечной) обработки жидкого металла с целью его рафинирования от вредных примесей и придания расплаву необходимых свойств, обеспечивающих требуемый высокий уровень показателей качества металлопроката, труб и метизов. Из многообразия существующих технологических процессов ковшевой металлургии (вакуумирование, рафинирование газами, шлаками и др.) достаточно эффективным является процесс внепечной обработки стали и чугуна оболочковой порошковой проволокой (ПП), не требующий сложного оборудования, дополнительных производственных площадей и значительных капиталовложений.

В настоящее время АО «ЧМЗ», ОАО «ЧСПЗ», АО «Тенакс» (г. Ногинск) выпускают по разработанным техническим условиям проволоку со следующими наполнителями: силикокальций, алюмокальций, магний, магний с кальцием, кальций, графит, титан, серный колчедан и др. Помимо известных, ЦНИИЧерметом созданы новые виды наполнителей порошковой проволоки из оксидов ниобия или ванадия с восстановителями, позволяющие осуществить прямое микролегирование стали ниобием или ванадием в процессе внепечной обработки. Частичная замена ферросплавов на оксидно-восстановительные смеси наполнителей ПП обеспечивает снижение энергетических и материальных затрат в производстве.

Наибольшее распространение получила обработка стали ПП с кальций содержащими наполнителями для модифицирования, десульфурации и улучшения разливаемости стали, повышения её механических свойств и обрабатываемости на станках.