1. Система требует больших расходов воды. При этом тепловоспринимающая способность воды используется крайне недостаточно: 1 кг воды, подаваемой в деталь, отбирает от неё всего 5 – 30 ккал. Большие расходы воды требуют увеличения диаметра подающих труб и числа насосов, расширения очистных сооружений и т.д. Значительные объёмы воды затрудняют её очистку; это приводит к частому прогоранию охлаждаемых деталей.
2. Невысокая температура нагретой в охлаждаемых деталях воды (20 – 600С) делает практически невозможным утилизацию уносимого ею тепла. Вместе с тем, доля тепла, отводимого с охлаждающей водой, весьма значительна и достигает 20 – 25 % от общего его прихода в печь.
3. Принудительное движение воды в охлаждаемых деталях с высокими скоростями приводит к большим потерям напора, что требует создания в сети высоких давлений и повышенного расхода электроэнергии.
4. Принудительное движение воды в системе водяного охлаждения, обеспечиваемое насосами, делает систему зависящей от электроэнергии. На случай отключения электропитания предусматривается подача энергии на насосы от различных источников, установка резервных паровых насосов или привода постоянного тока от аккумуляторных батарей, создание значительных запасных ёмкостей для воды и т.д.
Всё это удорожает систему.
1.4 Водоснабжение охлаждаемых деталей холодной водой
Даже кратковременное прекращение или нарушение охлаждения может вызвать крупную аварию печи. Поэтому требованию надёжности подчинено устройство схем питания охлаждаемых деталей.
При охлаждении холодной водой чаще всего применяется индивидуальное питание детали от коллектора (распределительной гребёнки) холодной воды. Коллектор представляет собой отрезок трубы большого диаметра, к которой проведён общий трубопровод холодной воды. В коллектор вварены трубы, подводящие воду к охлаждаемым деталям; каждая труба снабжена вентилем. Над вентилем обычно помещают щит с наименованием охлаждаемых деталей, к которым относится каждый вентиль.
Непосредственно под коллектором расположены открытые концы трубопроводов, отводящих воду от деталей (открытый слив). Сливная и подающая трубы расположены для данной детали одна под другой, что облегчает ориентировку. Иногда каждую пару труб окрашивают в свой цвет. Сливные трубы сбрасывают нагретую воду в открытое сливное корыто, которое сообщается с канализацией.
Обычно стараются сконцентрировать подачу и отвод воды со всех элементов печи на одном коллекторе, чтобы с одного места управлять и следить за всей системой охлаждения. При большом числе охлаждаемых деталей и значительном удалении их друг то друга устраивают несколько коллекторов. При большом количестве сравнительно мелких однотипных деталей и небольших тепловых напряжениях несколько деталей соединяют последовательно; при этом от коллектора на каждое соединение идёт одна линия. Параллельное соединение даже одинаковых деталей (разветвление после регулировочного вентиля на коллекторе) не применяется, так как увеличение гидравлического сопротивления какой-либо ветви вследствие случайных причин приводит к перераспределению потоков и резкому увеличению подачи воды в эту ветвь. Система водяного охлаждения снабжается рядом контрольно–измерительных приборов. Приборы контроля в некоторых случаях дополняются автоматическими регуляторами, изменяющими режим охлаждения (чаще всего расход воды) в зависимости от изменения регулируемого параметра (чаще всего температуры воды на выходе из детали).
Контролируемыми параметрами обычно являются температура воды на коллекторе и на выходе из отдельных деталей, расход воды на детали, давление воды на коллекторе.
Температура замеряется обычно термометрами сопротивления, расход – дроссельными расходомерами или счётчиками, давление – пружинными манометрами. На случай перегрева воды в какой – либо детали и понижения давления на коллекторе предусматривается сигнализация (световая, звуковая).[1]
В данном разделе представлен план выполнения расчетов для системы охлаждения кессонов реакционной шахты печи взвешенной плавки. Данная модель будет использоваться в следующем разделе.
1) Расчет начинаем с общих параметров системы охлаждения: числа кессонов в ряду, длин змеевиков рядового и фурменного кессонов.
2) Расчет сопротивлений для каждого кессона, стояка, коллектора и всей системы в целом ведем по формулам, приведенным в теоретической части. В данном расчете имеются неизвестные величины (число Рейнольдса, динамическая и кинематическая вязкости, толщина ламинарного подслоя, коэффициент трения, коэффициент местного сопротивления).
3) Расчет общих потерь для каждого кессона, стояка, коллектора и всей системы в целом ведем по формулам, приведенным в теоретическом разделе. Все неизвестные величины для этих формул уже будут рассчитаны в предыдущем пункте плана.
4) Решение уравнений Бернулли, определение давлений в кессоне, стояке и на входе в систему.
5) Расчет коэффициента а для построения напорной характеристики сети.
6) Построение характеристики сети.
7) Определение потерь тепла.
2.1 Расчёт потерь напора на трение
Потери напора на трение имеют повсеместный характер. Они вызваны как действием сил вязкости между отдельными слоями жидкости, движущимися с различными скоростями, так и соударениями частиц жидкости со стенками трубопровода.
Величина потерь напора на трение в круглых напорных трубопроводах обычно рассчитываются по формуле, которая носит название Дарси – Вейсбаха:
где
Расход жидкости при заданной скорости движения находится по формуле:
Q=FW (2)
где F– площадь поперечного сечения трубопровода (
Теперь можно определить режим движения жидкости. Количественной мерой режима движения жидкости является так называемое число Рейнольдса
Число
Для случая ламинарного режима движения в выражение (1) подставляется
На величину
Влияние ламинарного подслоя зависит от соотношения между его толщиной
Состояние стенки оценивается величиной эквивалентной шероховатости