Смекни!
smekni.com

Орская ТЭЦ (стр. 7 из 16)

б) отключение генератора.

Каждый обратный клапан имеет гидравлический сервомотор, приводимый в действие подачей воды от автоматического стопорного клапана и от масляного выключателя генератора.

6. Масляная система турбины питает маслом марки ТИП-22, как систему регулирования (при давлении 20 кгс/см², так и систему смазки (при давлении 0,8 кгс/см²) на уровне подшипников турбогенератора.

Подача масла в систему регулирования производится центробежным масляным насосом, приводимым непосредственно от вала турбины в систему смазки, до маслоохладителей, масло подается с давлением 3 кгс/см² сдвоенным эжектором, который одновременно обеспечивает необходимый подпор на всасывание центробежного насоса около 1 кгс/см².

7. Для обслуживания турбогенератора в период пуска, предусмотрены три масляных электронасоса:

а) пусковой, типа 6 МСМ-М, производительностью 150 м³/час, напор 450 мм вод ст., приводится в действие от эл. двигателя переменного тока, напряжением 380 Вольт, мощностью 125 кВт при 985 об/мин;

б) резервный, типа 5 НДВ-60, производительностью 180 м³/час, напор 26-30 мм вод ст., приводится в действие от эл. двигателя переменного тока, напряжением 380 Вольт, мощностью 22 кВт при 1450 об/мин;

Резервный маслонасос обеспечивает маслом систему смазки до включения пускового масляного насоса, а также работает при останове турбины.

в). аварийный маслонасос (насос смазки), типа 4 НДВ-60, производительностью 90-108 м³/час, напор 22 - 25 мм вод ст., приводится в действие от эл. двигателя постоянного тока, напряжением 220 Вольт, мощностью 14 кВт при 1500 об/мин;

работающим от аккумуляторной батареи.

Примечание:

Для проверки маслопровода системы регулирования на плотность, пусковой маслонасос переводится на работу с установкой эл. двигателя переменного тока, напряжением 3000 Вольт, мощностью 400 кВт при 1470 об/мин.

8. Турбина снабжена реле падения давления масла, которое автоматически:

а) включает эл. двигатель резервного масляного насоса смазки, работающего на переменном токе, при понижении давления в системе смазки после маслоохладителей до 0,6 кгс/см², с одновременной подачей предупредительного сигнала;

б) включает эл. двигатель аварийного маслонасоса, работающего на постоянном токе, если давление в системе смазки упадет до 0,5 кгс/см²;

в) отключает турбину и дает запрет на включение валоповоротного устройства при понижении давления масла в системе смазки до 0,3 кгс/см², с одновременной подачей сигнала.

9. Рабочая емкость масляного бака 14 м³ до верхнего уровня, емкость масляной системы около 16 тн.

Указатель уровня масла в баке снабжается контактами для подачи световых сигналов: при минимальном уровне по шкале прибора – 50 мм; при максимальном уровне – 320 мм.

10. Маслоохладители типа МБМ-63-90 с поверхностью охлаждения 60 м² каждого, с рабочим давлением охлаждающего масла 5 кгс/см², рабочим давлением воды 5 кгс/см², температура на входе 20º С – в количестве 2-х штук служат для охлаждения масла циркуляционной водой, с температурой не выше 33º С. Кроме того, в аварийных случаях к маслоохладителям подведена сырая вода после фильтров.

Давление воды в маслоохладителях не должно превышать 0,8 кгс/см². Расход охлаждающей воды на каждый маслоохладитель равен 180 м³/час, гидравлическое сопротивление при этом расходе равно 1,65 мм вод. ст.. Расход масла через маслоохладитель – 34 м³/час.

11. Регенеративное устройство предназначено для подогрева питательной воды паром, отбираемым из промежуточных ступеней турбины и состоит из трех поверхностных подогревателей высокого давления № А, Б, В.

а) поверхностные подогреватели № А, Б типа ПВ-425-230, с поверхностью нагрева 425 м² каждый, производительностью по воде 504 т/час;

б) подогреватель № В типа ПВ-350-230, с поверхностью нагрева 350 м² каждый, производительностью по воде 400 т/час.

Греющий пар на подогреватель А подается с паропровода отборного пара 10-16 ата, на подогреватель Б поступает – со второго отбора 32 ата, на подогреватель В пар поступает с первого отбора 50 ата.

Подогреватель высокого давления снабжен:

а) охладителем конденсата греющего пара, расположенным внутри подогревателя;

б) регулирующим клапаном отвода конденсата;

в) уравнительным сосудом для присоединения датчика электронного уровня с сигнализатором, воздействующим на клапан автоматической защиты для отключения подогревателей по воде, при аварийном повышении уровня конденсата.

12. Подогреватели высокого давления состоят из группового защитного устройства, состоящего из автоматического клапана на входе и обратного клапана на выходе питательной воды из подогревателей, автоматического клапана с электромагнитом и трубопроводом пуска и отключения.

Защитное устройство отключает подогреватели и направляет питательную воду по байпасу, в случае нарушения водяной плотности трубных систем и повышения уровня конденсата в корпусе любого из подогревателей выше установленного (по прибору на тепловом щите).

Конденсат греющего пара подогревателей высокого давления каскадно, через подогреватель А подается в деаэратор 6 ата № 4 и № 5.

13. Отсос пара из камер лабиринтовых уплотнений турбины производится в специальный вакуумный охладитель (ПС-50), снабженный эжектором поддерживающим давление в охладителе 0,94-0,96 ата, конденсат которого направляется в бак нижних точек.

Охладитель лабиринтового пара охлаждается хим.очищенной обессоленной водой, с помощью установленных 2-х центробежных насосов.

5.3. Характеристика трубопроводов в турбинном отделении

В КТЦ расположены следующие трубопроводы пара и горячей воды:

- паропроводы острого пара котлов и турбин, поперечная связь между котлами №№ 9,10,11,12,13 и турбинами №№ 9,10,11,12, паропроводы острого пара и поперечная связь относится к паропроводам 1-ой категории 2-ой группы;

- коллектор холодного питания котлов относится к трубопроводам 1-ой категории 4-ой группы;

- коллектор горячего питания котлов относится к трубопроводам 1-ой категории 4-ой группы;

- паропроводы отборного пара турбин на производство, давлением 10÷16 кгс/см2 относятся к трубопроводам 3-ей категории 1-ой группы.

При эксплуатации гл. паропровода персоналом котлотурбинного цеха должны выполняться:

- контроль за приборами тепловых перемещений паропроводов;

- наблюдение за состоянием гл. паропроводов;

- контроль за температурными режимами работы гл. паропроводов при пусках и остановках.

Паропровод высокого давления предназначается для подачи пара от котлов №№ 9,10,11,12,13 через поперечную связь на т/а №№ 9,10,11,12, так и на прямую (блочно) котел № 10 на т/а № 9; котел № 11 на т/а № 10; котел № 12 на т/а № 11; котел № 13 на т/а № 12; кроме к/а № 9, который работает на т/а №№ 9,10,11,12 только через поперечную связь.

Паропровод поперечной связи выполнен из стали 12Х1МФ с наружным диаметром 325х38; от котлов №№ 10,11,12,13 с диаметром 273х32, от поперечной связи к т/а №№ 9,10,11,12 с диаметром 273х32 выполнен из стали 12Х1МФ, от к/а 9 до задвижки 0-П-19 диаметром 273 х 32 с переходом на диаметр 325х38 из стали 12Х1МФ.

На магистралях гл. паропровода имеются в верхних точках - воздушники, а в нижних точках и тупиковых участках – дренажные устройства.

Предназначение дренажного устройства – это продувка гл паропровода при прогреве, обеспаривание при выводе в ремонт. Прогрев паропровода осуществляется на РДНД при выводе в ремонт через дренажи паропровод соединяется с атмосферой.

На поперечной связи гл. паропровода установлены задвижки I-П-19 (связь по пару КТЦ IV оч. и к/а 9) и задвижка 0-П-19, которая позволяет вывести в ремонт половину гл. паропровода поперечной связи.


6. УСТРОЙСТВО И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ ГЕНЕРАТОРОВ И СИСТЕМЫ ОХЛАЖДЕНИЯ

6.1. В КТЦ на водородном охлаждении работают турбогенераторы №№ 9,10,11,12. Применение водорода в качестве охлаждающей среды на турбогенераторах дает огромные преимущества по сравнению с воздушным.

Водород в 14,4 раза легче воздуха, он обладает лучшей в 7 раз теплопроводностью чем воздух. Это позволяет на тех же генераторах вырабатывать при водородном охлаждении значительно большую эл. мощность, чем при воздушном охлаждении. Водород в обычных условиях –газ без цвета, запаха, вкуса. К недостаткам относится взрывоопасность водорода в смеси с воздухом или кислородом.

При содержании в воздухе водорода 4 - 75% по объему образуется взрывоопасная смесь.

6.2. В КТЦ на водородном охлаждении работают турбогенераторы №№ 9,10,11,12. Работа этих турбогенераторов на воздушном охлаждении ЗАПРЕЩАЕТСЯ.

Допускается непродолжительная работа т/г 9,10,11,12 при воздушном охлаждении только в режиме холостого хода без возбуждения.

Генератор Тип генератора Газовый объем со вставленным ротором Мощность генератора при водородном охлаждении, МВТ
№ 9 ТВ-60-2МФ 50 м3 75
№ 10 ТВ-60-2МФ 50 м3 75
№ 11 ТВ-60-2МФ 50 м3 75
№ 12 ТВФ-60-2 34 м3 60

6.3. Уплотнение вала ротора и схема маслоснабжения уплотнений генераторов.

В турбогенераторах с водородным охлаждением предотвращение утечки водорода в месте выхода вала ротора осуществляется посредством специальных уплотняющих подшипников, размещаемых между торцевыми щитами генератора и опорными подшипниками ротора генератора.

Принцип действия уплотнения вала заключается в запирании водорода непрерывным встречным потоком масла, подаваемым в узкий зазор между валом ротора и вкладышем уплотнения под давлением, превышающим давление водорода.

Значение перепада давлений масло-водород находится в пределах 0,04-0,06 Мпа (0,4-0,6 кгс/см2).

Номинальное значение перепада уточняется при наладке системы маслоснабжения и на работающем генераторе поддерживается неизменным специальной регулирующей аппаратурой. Уменьшение перепада давления уплотняющего масла над давлением водорода до 0,03 МПа (0,3 кгс/см2) может привести к утечкам водорода через уплотняющие подшипники, увеличение этого перепада до 0,08-0,1 МПа (0,8-1,0 кгс/см2) также может привести к утечкам водорода, в первом случае – за счет незначительного превышения давления масла над давлением водорода, а во втором – в следствии большого расхода масла в сторону воздуха, больших скоростей масла и его эжектирующей способности.