Смекни!
smekni.com

Усовершенствование технологии получения изделий из полиамида методом литья под давлением (стр. 9 из 10)

Хроническое отравление: шум в голове и головные боли, особенно по утрам, головокружение, ощущение угара, исхудание, повышенная утомляемость, ослабление памяти и внимания, отсутствие аппетита, бессонница ночью и сонливость днем, сероватый цвет кожи, навязчивый страх, одышка, сердцебиение, потливость.

Влияние на потомство: после однократного и повторных отравлений женщин плод может погибнуть, даже если мать перенесла отравление без видимых для нее последствий. При отравлении в первые 3 месяца беременности возможны уродства плода [41].

Формальдегид (муравьиный альдегид, метаналь) – газ с резким запахом. 35-40% водный раствор формальдегида называют формалином. Растворы выделяют газообразный формальдегид даже при комнатной температуре, тем более при нагревании. Газообразный формальдегид горит. С воздухом или кислородом образует взрывчатые смеси. При остром отравлении- раздражение слизистых оболочек глаз и верхних дыхательных путей, боль и чувство давления в груди, отдышка, удушье. Порог восприятия запаха по разным данным 0,00007-0,0004 мг/л. На предприятиях, где концентрация формальдегида достигала 0,02-0,07 мг/л, у рабочих отмечались отсутствие аппетита, похудание, слабость, головные боли, сердцебиение и т.д.

Пыль ПЭНП. Пыль – твердые частицы, содержащиеся в воздухе, которые в зависимости от размера подразделяют на грубую и тонкодисперсную пыль. Тонкодисперсная пыль особенно опасна для здоровья, т.к. проникает в легкие, осаждается в легочных альвеолах и может причинить вред здоровью.

Введение ПЭНП (пыли) в трахею белым крысам или длительное вдыхание вызывало развитие диффузного, слабо выраженного процесса в легких [41].

Решение проблемы безопасности жизнедеятельности состоит в обеспечении нормальных (комфортных) условий деятельности людей, их жизни, в защите человека и окружающей его среды (производственной, природной, городской, жилой) от воздействия вредных факторов, превышающих нормативно-допустимые уровни. Поддержание оптимальных условий деятельности и отдыха человека создает предпосылки для высшей работоспособности и продуктивности[42].

Заключение

В результате проведенного литературного анализа показано, что базальтовые волокна относятся к перспективному классу наполнителей для ПКМ, так как обладают комплексом уникальных свойств: высоким уровнем физико-механических и химических свойств, долговечностью, стабильностью свойств при длительной эксплуатации в различных условиях. Базальтовые волокна экологичны, не выделяют опасных для здоровья людей веществ в воздушной и водной средах, негорючие, в настоящее время они полностью заменили канцерогенный асбест во всех областях его применения.

Для изготовления ПКМ довольно часто в качестве связующих применяют термопласты, в частности ПЭ, поэтому композиционные материалы на его основе находят все большие области применения. Широкое применение ПЭ объясняется сочетанием его ценных свойств со способностью перерабатываться при температуре 120 — 280°С всеми известными высокопроизводительными методами, применяемыми при переработке термопластов. Кроме того, полиэтилен — один из самых дешевых полимеризационных пластиков.

В результате проведенных исследований определен показатель текучести расплава для ПКМ на основе полиолефинов и базальтовой ваты. С повышением содержания БВ в ПКМ текучесть композиции уменьшается, а вязкость соответственно увеличивается. С повышением температуры на 100С ПТР резко увеличивается при наполнении композиции 10 и 15 % базальтовой ваты, однако при 20% наполнения БВ ПТР не изменяется.

Для повышения текучести композиции на основе ПЭВД в нее добавляли 5% ПЭС-5. Однако значения ПТР ниже, чем для не модифицированной композиции, это можно объяснить тем, что добавление ПЭС-5 приводит к комкованию БВ и более худшим ее распределением в композиции. В дальнейших исследованиях целесообразно увеличить количество ПЭС или ввести пластификатор для повышения текучести композиции.

По дисперсности исследуемый наполнитель обладает значительным разбросом частиц по размерам. Насыпная плотность измельченной БВ составляет 38,2 кг/м3, потери массы при сушке (Т=900С) – 0,2%.- %.

Выявлено влияние количества базальтовой ваты на термолиз базальтопластиков на основе ПЭВД, которое проявляется в поведении материала при горении его на воздухе. Все образцы с БВ поддерживают горение на воздухе. Введение 20 масс.ч. БВ в ПЭВД не обеспечивает малых потерь массы при поджигании на воздухе, однако потери массы по сравнению с ненаполненной композицией уменьшаются. Поэтому в дальнейших исследованиях планируется введение в композиции антипиренов.

Подтверждением более плотной и более сшитой структуры БП являются данные по термостабильности образцов, определенных термогравиметрическим анализом. По увеличению коксового остатка, меньшей потере массы до 6000С, возрастанию энергии активации можно утверждать о более полном взаимодействии полиэтилена с базальтовой ватой по сравнению с ненаполненным ПЭ.

Таким образом, применение базальтовой ваты в качестве наполнителя полиэтилена является перспективным и целесообразным.


Список использованной литературы

1.Артеменко С.Е. Наукоемкая технология полимерных композиционных материалов, армированных базальтовыми, углеродными и стеклянными нитями / С.Е.Артеменко // Пластические массы. - 2003 . - №2.-С. 5-6.

2. Наполнители для полимерных композиционных материалов // Пер. с англ. под ред. П.Г.Бабаевского. - М.: Химия. - 1981. - 736 с.

3. Земцов А.Н. Базальтовая вата: история и современность / А.Н.Земцов, С.И. Огарышев : Пермь, 2003 – 124 с.

4. Производство теплоизоляционных материалов из горных пород в ОАО «Новосибирскэнерго» / М.Г.Потапова и др. // Строительные материалы .-2001.-№ 2.-С. 14.

5. Лесков С.П. Мини-заводы для производства базальтовых волокон / С.П.Лесков // Строительные материалы .-2001.-№ 4.-С 25.

6. Джигирис Д.Д. Основы производства базальтовых волокон и изделий / Д.Д Джигирис, М.Ф Махова. – М.: Теплоэнергетик, 2002.-416с.

7. Виноградов С.Д. Влияние олигоэфира канифоли на свойства и перерабатываемость полиэтилена / С.Д. Виноградов, Д.А. Богомазов, П.С. Беляев, А.В. Аленкин // Пластические массы.- 2006.- №8.- С.41-43.

8. Энциклопедия полимеров / Под ред. В.А.Кабанова. М., Советская энциклопедия. – 1977. – Т.3. – 1152с.

9. Брацыхин Е.А. Технология пластических масс / Е.А.Брацыхин. Л: Химия. – 1974. – 352с.

10. Власов С.В. Основы технологии переработки пластмасс: Учебник для вузов / С. В. Власов и др. - М.: Химия, 2004. - 600 с.

11. Горбунова И.Ю. Модификация кристаллизующихся полимеров / И.Ю. Горбунова, М.Л. Кербер // Пластические массы.- 2000.- №9.- С.7-11.

12. Ениколопов Н.С. Твердофазная модификация полиолефинов и получение композитов / Н.С. Ениколопов, М.Д. Сизова, Л.О. Бунина, С.Н. Зеленецкий // Высокомолекулярные соединения.- 1994.- Т.36.- №4.- С.608-615.

13. Волков В.П. Механохимическая модификация полиолефинов полярными мономерами в твердом состоянии / В.П. Волков, Л.О. Бунина, М.Д. Сизова, С.Н. Зеленецкий // Пластические массы.- 1997.- №3.- С.25-29.

14.Зеленецкий А.Н. Механохимическая модификация полиолефинов в твердом состоянии / А.Н. Зеленецкий, М.Д. Сизова, В.П. Волков, Н.Ю. Артемьева // Высокомолекулярные соединения.- 1999.- Т.41.- №5.- С.798-804.

15. Зеленецкий А.Н. Особенности механического поведения ПЭНП, модифицированного малеиновым ангидридом в твердом состоянии, и композитов на его основе / А.Н. Зеленецкий, В.П. Волков, Л.О. Бунина, А.А. Кечекьян // Пластические массы.- 2004.- №7.- С.24-27.

16. Касперович О.М. Изучение влияния состава вспенивающихся композиций на основе ПЭВД на их структуру и свойства / О.М. Касперович, В.В. Яценко, Е.Ю. Усачева // Пластические массы.- 2004.- №11.- С.23.

17. Ахметханов Р.М. Модификация полиэтилена элементной серой в условиях упруго-деформационного воздействия, как способ получения полимерного продукта с новыми свойствами / Р.М. Ахметханов, Р.Г. Кадыров, К.С. Минскер // химическая промышленность.-2002.-№12.-С.30-32.

18. Гориловский М.И. Перспективы развития производства и потребления полиэтиленовых труб в России / М.И.Гориловский, С.В.Топалов // Пластические массы. – 2003. - №7. – С.3-5.

19. Исследование кристалличности и термостабильности в трубах, полученных из различных видов полиэтилена / М.И.Гориловский и др. // Пластические массы. – 2005. - №4. – С.9-12.

20. Исследование полей разброса размеров и реологических характеристик в трубах большого диаметра из различных видов полиэтиленов / М.И.Гориловский и др. // Пластические массы. – 2005. - №4. – С.12-14.

21. Стручков А.С. Поведение полиэтиленовых труб из ПЭ80 при низких климатических температурах / А.С.Стручков, Ю.Ю.Федоров // Пластические массы. – 2002. - №2. – С.43-46.

22. Стручков А.С. Деформируемость полиэтиленовых труб из ПЭ80 при нагружении внутренним давлением в низких климатических температурах / А.С.Стручков, В.И.Иванов, Ю.Ю.Федоров // Пластические массы. – 2001. - №9. – С.36-38.

23. Влияние ультразвуковых колебаний на формование изделий медицинского назначения из сверхвысокомолекулярного полиэтилена / А.В.Лысак и др. // Пластические массы. – 2002. - №10. – С.43-45.

24. Цветкова Е.Л. Структура и свойства поверхностного слоя деталей из сверхвысокомолекулярного полиэтилена, переведенного в состояние студня / Е.Л. Цветкова // Пластические массы. – 2004. - №4. – С.16-18.

25. Полухина О.С. Модифицирование физико-химических свойств поверхности полиэтиленов медицинского назначения методом прививочной полимеризации моноакрилата поли (этилен оксида), инициированной вакуумным ультрафиолетом / О.С.Полухина, В.Н.Василец, В.И.Севастьянов // Перспективные материалы. – 2003. - №5. – С.58-64.

26. Гусейнова З.Н. Композиция на основе вторичного ПЭ / З.Н. Гусейнова, С.А. Гулиев, Н.Я. Ищенко // Пластические массы.- 2005.- №11.- С.46-48.