tк – температура продукта на выходе из камеры конвекции, которая находится путем решения квадратичного уравнения вида:
где а = 0,000405; b = 0,403; с – соответственно коэффициенты уравнения.
Коэффициент с вычисляется следующим образом:
где
Решению квадратичного уравнения удовлетворяет только значение одного корня, так как второй корень, принимающий отрицательное значение, не имеет физического смысла:
Находим большую, меньшую и среднюю разности температур:
Коэффициент теплопередачи в камере конвекции определяется уравнением:
где a1, aк, aр – соответственно коэффициенты теплоотдачи от газов к стенке, конвекцией, излучением трехатомных газов.
aр определяют по эмпирическому уравнению Нельсона:
где tср – средняя температура дымовых газов в камере конвекции:
aк определяется следующим образом:
где Е – коэффициент, зависящий от свойств топочных газов, значение которого определяем методом линейной интерполяции, используя табличные данные зависимости его от tср; принимаем Е = 21,248 [2, табл.4];
d – наружный диаметр труб:
U – массовая скорость движения газов, определяемая по формуле:
где В – часовой расход топлива, кг/ч;
G – количество продуктов сгорания, образующихся при сжигании 1 кг топлива, кг/кг;
f – свободное сечение прохода дымовых газов в камере конвекции:
где n = 2 – число труб в одном горизонтальном ряду;
S1 – расстояние между осями этих труб; S1 = 0,275 м (см. табл.4);
lр – рабочая длина конвекционных труб; lр = 18 м (см. табл.2);
а - характерный размер для камеры конвекции:
Рассчитываем массовую скорость движения газов:
Коэффициент теплоотдачи конвекцией:
Коэффициент теплопередачи от дымовых газов к нагреваемому продукту:
Рис.4. Схема расположения
Таким образом, поверхность конвекционных труб:
Определяем число труб в камере конвекции:
Число труб по вертикали:
Высота пучка труб в камере конвекции определяется по формуле:
где S2 – расстояние между горизонтальными рядами труб:
Рассчитаем среднюю теплонапряженность конвекционных труб:
Выводы: 1) рассчитали поверхность нагрева конвекционных труб, получив следующий результат: Нк = 622,63 м2;
2) определили значение средней теплонапряженности конвекционных труб, оно составило Qнк = 14874,2 Вт/м2, что несколько выше допустимого значения (13956 Вт/м2), а значит камера конвекции работает с высокой эффективностью, но может быть нарушена нормальная работа печи (например, прогар труб); чтобы уменьшить теплонапряженность, можно увеличить поверхность конвекционных труб, т.е. увеличить их количество.
2.7 Гидравлический расчет змеевика трубчатой печи
Цель расчета: определение общего гидравлического сопротивления змеевика печи или давления сырья на входе в змеевик.
Давление сырья на входе в печь складывается из следующих составляющих:
где Рк, DРи, DРн, DРк, DРст. – соответственно давление сырья на выходе из змеевика печи; потери напора: на участке испарения, на участке нагрева радиантных труб, в конвекционных трубах; статический напор.
Значение Рк известно из исходных данных:
Рк = Рвых. = 1,5 ата = 1,5×105 Па = 0,15 МПа.
Остальные слагаемые необходимо рассчитать.
Расчет начинается с определения потерь напора на участке испарения:
где Рн – давление в начале участка испарения, которое, в свою очередь, рассчитывается методом последовательного приближения (метод итераций), используя уравнение Бакланова:
где А и В – расчетные коэффициенты.
где l, L1,
lи – длина участка испарения:
где
lрад. – эквивалентная длина радиантных труб:
где lр – рабочая длина одной трубы; lр = 18 м (см. табл.2);
lэ – эквивалентная длина печного двойника (ретурбента), зависящая от наружного диаметра трубы d:
nр – число радиантных труб, приходящихся на один поток:
где n = 2 – число потоков;
Nр – общее число радиантных труб:
Рис.5. График зависимости Рн = f(tн), построенный на основании данных по однократному испарению продукта.
Начинаем расчет давления в начале участка испарения Рн методом итераций.
Предварительно задаемся значением Рн, принимаем Рн = 8 ата = 0,8 МПа, и по зависимости Рн = f(tн) (рис.5) находим температуру начала испарения продукта tн, соответствующую этому давлению: tн = 260 0С.