Смекни!
smekni.com

Пресс испытательный (стр. 4 из 5)

Коэффициенты берутся по таблицам 10.7 – 10.13 [2 c. 191-192].

Коэффициенты снижения предела выносливости:

Коэффициент влияния асимметрии цикла:


Пределы выносливости вала в рассматриваемом сечении.

Коэффициенты запаса по нормальным и касательным напряжениям.

Коэффициент запаса прочности в рассматриваемом сечении:

,

6.2. Расчет тихоходного вала

6.2.1 Расчет на статическую прочность

Расчетная схема представлена на рис.2: Наиболее опасным является сечение I-I.

Определяем геометрические характеристики опасного сечения:

Определяем напряжения в сечении I-I:


Частные коэффициенты запаса:

,

где

- пределы текучести материала по нормальным и касательным напряжениям,
,
[2, с. 185].

Общий коэффициент запаса прочности:

6.2.2 Расчет вала на сопротивление усталости.

Определим амплитуды напряжений и среднее напряжение цикла:

Коэффициенты


берутся по таблицам 10.7 – 10.13 [2 c. 191-192].

Коэффициенты снижения предела выносливости:

Коэффициент влияния асимметрии цикла:

Пределы выносливости вала в рассматриваемом сечении.

Коэффициенты запаса по нормальным и касательным напряжениям.

Коэффициент запаса прочности в рассматриваемом сечении:

,

7. Расчет соединений

7.1 Шпоночные соединения

Шпоночные соединения применяются для передачи вращательного момента с колеса на вал. Чаще всего применяются призматические и сегментные шпонки. При проектировании в данном случае использовались призматические шпонки, т.к. диаметры валов малы, и использование сегментных шпонок не допустимо из-за глубоких пазов для них. Рассчитываются шпоночные соединения из условия прочности шпонки на смятие. Шпонка на быстроходном валу для установки шкива.

Для

: b=4 мм, h=4, t1=2.5мм по таблице 24.27 [2 c. 475].

Для стальной неподвижной шпонки принимается

мм

Округляем по ряду длин призматических шпонок l=10 мм.

7.2 Расчет соединений с натягом

7.2.1 Расчет посадки венца червячного колеса на вал

Давление p ( МПа ), необходимое для передачи вращающего момента TТ ( Н м ):


где k - коэффициент запаса сцепления, k = 2; f - коэффициент трения, f = 0.14 (сталь-бронза), d - диаметр вала, d = 135 мм; l - посадочная длина, l = 34мм;

Необходимый расчетный натяг

, мкм:

где Е1 , Е2 - модули упругости первого рода, Е1 = 2,1×105 МПа, Е2 =0,8×105 МПа;

С1 , С2 - коэффициенты жесткости:

- коэффициент Пуассона,
=0,3
= 0.35 , d1 – внутренний диаметр вала, d1 =94 мм, d2 – делительный диаметр колеса, d2 = 154 мм;


Поправка на обмятие неровностей ( мкм ):

где Rа1 , Rа2 - средние арифметические отклонения профиля поверхностей, Ra1 = 0,8мкм, Ra2 = 1,6мкм;

Минимальный натяг (мкм), необходимый для передачи вращающего момента:

Максимальный натяг ( мкм ), допускаемый прочностью венца колеса:

Здесь

- максимальная деформация, допускаемая прочностью ступицы, [p]max- максимальное давление, допускаемое прочностью ступицы - для Бронзы БрО5Ц5С5
=140 МПа

Условия пригодности посадки:


Походит посадка

Температура нагрева охватывающей детали, 0С:

0С,

где Nmax – максимальный натяг выбранной посадки, Nmax=214 мкм; Zсб – зазор для удобства сборки, Zсб=15 мкм [2, с. 91];

- коэффициент температурного расширения бронзы,
[2, с. 89]; [t] – допускаемая температура для бронзы, [t]=150…200 0С.

8. Выбор смазочных материалов

8.1 Смазывание передач

Для смазывания передач широко применяют картерную систему. В корпус редуктора заливают масло так, чтобы венцы колес были в него погружены. Колеса при вращении увлекают масло, разбрызгивая его внутри корпуса. Масло попадает на внутренние стенки корпуса, откуда стекает в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которая покрывает поверхность расположенных внутри корпуса деталей.

Принцип назначения сорта масла следующий: чем выше окружная скорость колеса, тем меньше должна быть вязкость масла и чем выше контактные давления в зацеплении, тем большей вязкостью должно обладать масло. Поэтому требуемую вязкость масла определяют в зависимости от контактного напряжения и окружной скорости колес.

Контактные напряжения (из распечатки).