Смекни!
smekni.com

Основы теории и технологии контактной точечной сварки (стр. 20 из 44)

3.2.1. Способ контактной точечной сварки с обжатием периферийной зоны соединений вне контура уплотняющего пояска

Способ контактной точечной сварки с обжатием периферийной зоны соединений вне контура уплотняющего пояска [209] заключается в том, что в нем, как и в описанных выше, соединяемые детали сжимают токопроводящими электродами, прикладывают вокруг них дополнительное периферийное усилие для обеспечения сжатия в уплотняющем пояске и пропускают импульс сварочного тока. Отличается он тем, что дополнительное периферийное усилие прикладывают вне контура уплотняющего пояска.

При осуществлении данного способа КТС токопроводящие электроды 1 (рис. 3.2) с диаметром рабочей части DЭ и обжимные втулки 2 с внутренним диаметром dВВ и наружным диаметром dВН сжимают свариваемые детали 3, соответственно, усилиями токопроводящих электродов FЭ и обжимных втулок FО. В плоскости сварочного контакта эти усилия уравновешиваются силой FЯ, развиваемой давлением расплавленного металла в ядре (диаметром dЯ) по его площади, усилием в площади уплотняющего пояска FП и усилием в площади кольцевого контакта FК, расположенного вне контура уплотняющего пояска L1. Вследствие того, что при сварке металл вытесняется в направлении контакта деталь–деталь с образованием в контуре уплотняющего пояска L1 рельефа высотой hП, представляется возможным передавать часть усилия обжатия FО в зону сварки (в контур L1) за счет силового сопротивления деталей FУ их прогибу между контурами уплотняющего пояска L1 и кольцевого контакта L2. Таким образом, в зону сварки может быть передана часть усилия обжатия FО, прилагаемого между контурами L2 и L3, за вычетом его части, уравновешиваемой в кольцевом контакте FК и упругим сопротивлением деталей FД при их сближении до соприкосновения (передаваемое усилие не может быть больше усилия FУ сопротивления деталей их суммарному прогибу между контурами L1 и L2 на величину высоты рельефа hП). Это предоставляет возможность увеличить внутренние диаметры обжимных втулок dВВ и диаметры DЭ электродов и, следовательно, их стойкость.

Так, например, производилась сварка образцов из стали 12Х18Н10Т на машине МТПУ-300 с использованием цилиндрических обжимных втулок и электродов с плоской рабочей поверхностью из сплава Бр.Х. Параметры режимов, максимально допустимые внутренние диаметры обжимных втулок dВВМАХ, при которых обеспечивалась передача упругостью деталей технологически требуемого усилия сжатия в площади уплотняющего пояска (в приведенных примерах 95 % от FО) приведены в табл. 3.1.

При этом диаметры рабочих поверхностей dЭ задавались в соответствии с известными рекомендациями для обычных способов сварки, обеспечивающих наибольшую стойкость электродов. Диаметры же цилиндрических поверхностей электродов DЭ задавались по внутреннему диаметру обжимной втулки dВВ, которые определяли из условий способов: при сварке по способу с обжатием в области уплотняющего пояска dВВ задавались в пределах контура уплотняющего пояска dП, а при сварке по данному способу в пределах dВВМАХ.

Таблица 3.1

Параметры режимов и электродов при сварке с обжатием периферийной зоны соединения

Толщина
деталей

s,

мм

Параметры режимов

Параметры соединения и

электродов, мм

IСВ,

кА

tСВ,

c

FСВ,

даН

FЭ,

даН

FО,

даН

dВВМАХ

мм

dЯ,

мм

dЭ

dП

DЭ

Прото
тип

Новый

1+1

2+2

3+3

6,2

8,9

11,3

0,16

0,28

0,36

460

900

1350

270

548

830

190

360

520

7,7

15

34

5.0

7.0

9.0

5.0

8.0

10.0

6.5

9.4

11.9

6,0

9,0

11.0

8,0

16,0

25,0

Стойкость электродов оценивалась по количеству сваренных точек, приводящих к увеличению рабочих поверхностей электродов на 10 %. При этом получены следующие результаты: при сварке по способам с обжатием в области уплотняющего пояска и вне его среднеарифметическое количество точек при сварке трех серий образцов каждой толщины соответственно составило: 1 + 1 мм — 17 и 63; 2 + 2 мм — 23 и 187; 3 + 3 мм — 27 и 276. Таким образом, стойкость электродов при сварке по данному способу увеличивается в 4...10 раз, что показывает высокую эффективность данного способа в части повышения стойкости электродов.

Очевидно, что для способов КТС с обжатием периферийной зоны соединений необходима другая математическая модель силового взаимодействия деталей, учитывающая их особенности.

3.2.2. Математическая модель термодеформационного равновесия процесса контактной точечной сварки с обжатием периферийной зоны соединения

Математическая модель термодеформационного равновесия процесса контактной точечной сварки с обжатием периферийной зоны соединения [210...212], от модели термодеформационного равновесия при традиционных способах КТС, описанной выше, отличается в основном математическим описанием деформационных процессов, протекающих вне контура уплотняющего пояска. Особенности этих процессов, в частности, возможность разделения в процессе формирования соединения контакта деталь–деталь на два отдельных, установлены экспериментально (рис 3.3).


Причиной разделения контакта деталь–деталь являются прогибы ω1 и ω2 свариваемых деталей 3, вследствие увеличения высоты hП уплотняющего пояска между ними в процессе КТС с обжатием периферийной зоны соединения, которое происходит вследствие дилатации и объемных пластических деформаций металла в зоне сварки. В результате из общего контакта деталь–деталь, который формируется при сжатии холодных деталей, образуются два раздельных: свариваемый контакт, который формируется как и при традиционных способах КТС в площади уплотняющего пояска, ограниченного наружным контуром L1t, и замкнутый кольцевой контакт в области сжатия деталей обжимными втулками (с внутренним L2t и наружным L3t контурами). Это возможно в том случае, если внутренний контур обжимных втулок L4 больше контура уплотняющего пояскаL1t, т. е. в том случае, если обжатие осуществляется вне контура уплотняющего пояска.

В рассматриваемой модели процесса формирования соединения, в любой момент времени t, внутри изменяющегося контура уплотняющего пояска L1t протекают те же процессы, что и при традиционных способах КТС. Поэтому напряжения и силы, действующие в зоне формирования соединения и нормальные относительно плоскости свариваемого контакта, обозначим теми же функциями, что и в модели традиционных способов контактной точечной сварки без обжатия периферийной зоны соединений (см. зависимости (3.1)…(3.5)):

-

— напряжения в площади SЭt контакта электрод–деталь;