Смекни!
smekni.com

Наукові основи підвищення ефективності гальмування поліпшенням умов взаємодії коліс з гальмівними колодками і рейками (стр. 5 из 10)

У таких складних щодо температурної напруженості умовах можуть використовуватися фрикційні вуглець-вуглецеві композиційні матеріали (C-C композити), які являють собою вуглецеву матрицю, зміцнену вуглецевими волокнами. Механічними, фізичними й термічними властивостями композитів можна управляти шляхом зміни відповідних параметрів армуючого каркаса: орієнтацією волокон, об'ємним вмістом і кроком волокон по напрямках, щільністю каркаса, типом ниток і видом волокон, а також вибором матриці та способу виготовлення.

Початковими матеріалами для вуглецевих волокон є віскозні і поліакрилнітрильні (ПАН) волокна, які після високотемпературної обробки (карбонізація і графітизація) набувають високих міцнісних та пружних характеристик, термостійкості, стійкості до атмосферного впливу і хімічних реагентів.

Ущільнення багатонаправлених структур виконується методом осаджування вуглецю з газоподібного вуглеводню в спеціальних термоградієнтних газофазних установках типу АГАТ-1.6 і АГАТ-2.0 у Національному науковому центрі «Харківський фізико-технічний інститут». При цьому було використано метод радіально рухомої зони піролізу, наукові основи і реалізація якого запропоновані проф. В.А. Гуріним.

Запропоновано теорію і методику розрахунку пружних технічних констант просторово армованих КМ, що враховують ступінь армування і для яких початковими даними є модуль пружності, модуль зрушення і коефіцієнт Пуассона армуючих волокон і матриці (зв’язуючого) .

Визначення коефіцієнтів матриці піддатливості

виконано методом Крамера шляхом розв'язку лінійних рівнянь закону Гука, що містять коефіцієнти жорсткості щодо деформацій
і
, представлених системою рівнянь (17), котра розпадається на дві незалежні системи для визначення
й
, кожна з яких розв'язується окремо:

Розв'язком системи рівнянь визначаються модуль пружності, модуль зрушення і коефіцієнт Пуассона просторово армованого композиту (рис.3). Реалізація методики розрахунку виконується програмним модулем, що враховує параметри початкових матеріалів і тип матриці.

Випробування показали, що С-С композити мають унікальні фрикційні властивості: коефіцієнт тертя при температурі в контакті 15 ... 20°С становить 0,2...0,3 і зі зростанням температури контактної поверхні тертя не зменшується, як у серійних фрикційних матеріалів, а збільшується до значень ≈ 0,4...0,6 і стабілізується при температурі більше 400°С.

З метою забезпечення достатнього і стабільного коефіцієнта тертя гальмівних колодок розроблено технологічні схеми і способи виготовлення модифікованих С-С композитів, у яких використано модифікатори тертя: оксид алюмінію (Al2O3), карбід бору (B4C) двох фракцій – грубозернистої й дрібнозернистої, а також дрібнодисперсний аморфний бор.

Експериментальні дослідження міцнісних, теплофізичних і триботехнічних характеристик «чистих» і модифікованих С-С композитів було проведено на дослідних і натурних зразках з різним вмістом (% по масі) вуглецевих волокон, піровуглецю, сітки з мідного дроту та модифікаторів тертя, – різних за типом і фракційним складом.

Вдосконалення технологічних схем виготовлення і використання нових перспективних технічних рішень дозволили зменшити собівартість виробництва фрикційних С-С композитів до рівня, що не перевищує двократної вартості звичайних композиційних матеріалів.

У п'ятому розділі наведено результати експериментальних досліджень експлуатаційних характеристик і ефективності використання гальмівних колодок із С-С композитів. Попередні випробування проводилися на стандартній машині тертя моделі СМЦ-2, а доводочні з натурними колодками – на спеціальній стендовій установці, що реалізує схему «обертовий вал – гальмівні колодки». При створенні експериментальної установки використано нові технічні рішення, зокрема гальмівні колодки мали два ступеня рухомості – за напрямом дії нормального зусилля притиснення і разом з контртілом – у напрямі обертання останнього під впливом сили зчеплення.

Для реєстрації вихідних параметрів процесу гальмування розроблено вимірювальну систему на базі персональної ЕОМ з аналого-цифровим перетворювачем (АЦП) і керуюча програма (АDC) на мові програмування Delphi для роботи в операційних системах Windows.

Всі випробування проводилися як порівняльні за ідентичних умов і режимів навантаження. Для випробувань було прийнято: чавунні колодки виробництва «ХК «Луганськтепловоз»); ЕМ-2 (6КВ-10) за ГОСТ 15960-70; 6КХ-1Б за ТУ 38-5-560-69; ретинакс А і Б (ФК-16А і ФК-24А) за ГОСТ 10851-73; стрічка азбестова типу Б і полімерний композит ТР-9 тощо.

Після попередніх випробувань серійних матеріалів і модифікованих С-С композитів, що відрізняються типом вуглецевих волокон і структурою зміцнюючого каркаса, видом модифікатора тертя, кількісним і фракційним складом останнього, для доводочних випробувань було прийнято дев'ять типів найбільш перспективних композицій. Процес ущільнення піровуглецем проводився в потоці природного газу методом радіально рухомої зони піролізу, після чого заготовки піддавалися механічній обробці і шліфуванню робочої поверхні тертя алмазними дисками.

Основними показниками для порівняння ефективності гальмівних колодок були прийняті величина і характер зміни коефіцієнта тертя залежно від інтегрального фактора - температури на контактній поверхні тертя, що узгоджується з вимогами Бюро експлуатаційних випробувань Міжнародного союзу залізниць (БЕВ МСЗ). Для обробки результатів випробувань гальмівних колодок із С-С композитів використано методи математичної статистики і теорії ймовірностей (рис. 4).

Аналіз результатів випробувань показав, що математичне очікування величини коефіцієнта тертя за початкової температурі 20°С становить 0,451 і змінюється від 0,366 до 0,536 у межах

, що становить99,7% спостережуваних значень, а в межах
змінюється від 0,395 до 0,507, що становить 95,4% отриманих експериментальних даних. Отже, модифіковані аморфним бором композити мають достатній початковий коефіцієнт тертя при температурі 20°С , однак особливо важливим є його стабілізація на рівні 0,45...0,55 у широкому діапазоні зміни температури поверхні тертя (20…500˚С – за умовами випробувань).

Фрикційна характеристика модифікованих аморфним бором С-С композитів (рис. 5), отримана методом математичного планування експерименту з урахуванням впливу питомого навантаження (

, МПа), швидкості ковзання на контакті (
, м/с) і температури (
, °C), має вид:

Аналіз результатів показав, що з ростом швидкості ковзання і питомого навантаження величина коефіцієнта тертя повільно зменшується, а з ростом температури контактної поверхні теж повільно, але збільшується.

Порівняння фрикційних властивостей модифікованих С-С композитів з металокерамічними (BM-41) і композиційними гальмівними колодками (929-1G) фірми «BECORIT» (рис. 6), сертифікованими МСЗ для використання на рухомому складі Європейських залізниць, свідчить про їхню відповідність існуючим вимогам.

Ресурсні випробування з визначення зносостійкості проводилися за єдиною і ідентичною програмою навантаження; величина зношення визначалася масовим методом з подальшим перерахунком на лінійне зношення, при цьому контактна поверхня тертя становила не менш 80% від площі колодки.

Особливо високою зносостійкістю відрізняються модифіковані С-С колодки, які мають зношування контактної поверхні в 6...9 разів менше звичайних фрикційних матеріалів і в 2,1...2,7 рази менше, ніж у існуючих композиційних колодок. Також встановлено, що найбільше руйнують матеріал контртіла (колісна сталь марки 2 - бандажі колісних пар) чавунні гальмівні колодки, при цьому зношування поверхні контртіла в 1,3...1,7 раза вище, ніж за модифікованих і «чистих» С-С колодок.

Розрахунки дійсного гальмівного шляху (SД) тепловоза ТЕП 150 (рис. 7, а) за методикою ПТР при екстреному гальмуванні на площадці з швидкості 160 км/год при послідовному використанні стандартних чавунних колодок (1*), з підвищеним вмістом фосфору (2*), композиційних (3*) і С-С колодок (4*) показали, що нові С-С колодки забезпечують зменшення гальмівного шляху в порівнянні із чавунними більш ніж у два рази, а з композиційними - на 8...10%.

Математичним моделюванням просторового руху локомотива з составом потяга (рис.7, б) по чистих і сухих рейках у режимі гальмування із чавунними і С-С колодками встановлено, що незалежно від фрикційних умов у контакті коліс із рейками для досягнення однієї й тієї ж величини гальмівного шляху необхідна величина натискання на С-С колодки є у два раза меншою. Отже, модернізація рухомого складу може бути виконана простою заміною серійних композиційних колодок на С-С колодки.

Пропоновані гальмівні С-С колодки за своїми технічними і трибологічними характеристиками не поступаються кращим зразкам сучасних фрикційних матеріалів, а здатністю витримувати високу температурну напруженість на контактній поверхні тертя і забезпечувати достатньо високий і стабільний рівень коефіцієнта тертя перевершують останні.