Смекни!
smekni.com

Наукові основи підвищення ефективності гальмування поліпшенням умов взаємодії коліс з гальмівними колодками і рейками (стр. 4 из 10)

За такою ж схемою отримано інтегральне рівняння для визначення контактних дотичних напружень. У вигляді окремого випадку отримані інтегральні рівняння вертикальних і горизонтальних коливань колеса при смуговому контакті із пружним півпростором.

Уводячи в розгляд трансформанти Фур'є функцій, і підставляючи їх в (8), одержимо інтегральне рівняння в безрозмірних змінних

Інтегральне рівняння (10) відрізняється від (3) для розв'язку плоскої задачі тільки параметром

, тому використані такі ж методи розв'язку.

На прикладі задачі щодо вертикальних коливань колеса при взаємодії із пружною рейкою показано асимптотичні методи розв'язку інтегральних рівнянь, які дозволяють досліджувати основні характеристики задач із достатнім для практики ступенем точності.

При розв'язку двовимірної задачі щодо вертикальних коливань колеса під зусиллям у виді використано прийом накладення двох розв'язків: від статичної і динамічної дії, при цьому обмежений розв'язок від статичного зусилля отримано у виді. Обмежений розв'язок від динамічного зусилля отримано асимптотичним методом для випадку малих відносних частот коливань. Асимптотичні формули для визначення амплітудних значень нормальних контактних напружень набувають виду:

Використовуючи асимптотичні методи, за допомогою яких розв'язана плоска задача, розглянуто розв'язок і для просторової контактної задачі, що наведена до двовимірного інтегрального рівняння виду (8). Асимптотичні і чисельно-аналітичні методи теорії пружності і контактної механіки при дослідженні динамічних контактних задач щодо взаємодії колеса з рейкою дозволили визначити рівень контактних напружень і встановити характер їхнього розподілу по зоні контакту.

Отримані результати використані при багатомірному моделюванні руху візкового екіпажа локомотива в складі потяга для визначення сил зчеплення і теплового потоку, що виникає в контактній зоні тертя коліс із рейками в процесі їхньої взаємодії.

У третьому розділі одержали подальшого розвитку теоретичні дослідження динамічних характеристик екіпажів локомотивів на основі вдосконалення просторової математичної моделі руху локомотива в складі потяга. Моделювання проведено з метою визначення ступеня впливу на рівень динамічного діяння різних факторів конструктивного і експлуатаційного характеру, а також поліпшення характеристик і умов взаємодії рухомого складу й колії раціональним вибором параметрів та характеристик візкових екіпажів.

В основу побудови математичної моделі закладено загальноприйняті передумови (рис. 2). У моделі використано характеристики силових і пружних зв'язків, одержані дослідним шляхом на натурних пристроях.

Величина сили зчеплення визначається для кожного колеса залежно від швидкості руху і ковзання відповідних контактних поверхонь, нормального тиску та характеру його розподілу по зоні контакту при довільних профілях коліс і рейок з урахуванням їхнього взаємного розташування і фрикційного стану. Швидкість руху локомотива в поздовжньому напрямку визначається в процесі інтегрування диференціальних рівнянь руху, і на її величину ніяких обмежень не накладається.

У розрахунках ураховуються також електродинамічні процеси в тягових електродвигунах і поздовжні коливання вагонів у складі потяга.

Для складання диференціальних рівнянь руху використано рівняння Лагранжа другого роду у виді:

Збурююча дії від шляху задається незалежними функціями переміщення у вертикальній

і горизонтальній
площинах.

У моделі використано детерміновані збурювання у виді відомих синусоїдальних функцій з параметрами, що відповідають певному ступеню зношування або некруглостей коліс, а також випадкові збурювання – методом пропуску «білого шуму» через лінійний фільтр. Розв'язок рівнянь знаходиться в часовій зоні у виді відомого вектора стану. При моделюванні состава потяга залежно від кількості вагонів у математичну модель додається рівна кількість

узагальнених координат.

За результатами інтегрування диференціальних рівнянь руху визначаються лінійні й кутові переміщення кузова, рам візків, колісних пар і тягових електродвигунів, сили зчеплення коліс із рейками, поперечні горизонтальні й вертикальні переміщення рейок, швидкості і прискорення тіл досліджуваної системи.

Моделювання силової взаємодії екіпажа тепловоза ТЕП 150 і рейкової колії виконано при розрахунковому навантаженні від колісної пари на рейки в 215 кН у швидкісному діапазоні від 40 до 200 км/год при русі в прямих і кривих ділянках колії з радіусом 300, 600 і 1000 м.

Результати розрахунків динамічних процесів за наведеною математичною моделлю тестувалися шляхом порівняння з результатами ходових динамічних випробувань тепловоза ТЕП 150, проведених відділом випробувань ВАТ «ХК «Луганськтепловоз». Результати порівняння показали задовільну збіжність за коефіцієнтами вертикальної і горизонтальної динаміки, рамними силами, вертикальними силами у буксовому підвішуванні, взаємним переміщенням елементів екіпажа і кузова, вертикальними і горизонтальними прискореннями візків і кузова. Розбіжність результатів за основними показниками не перевищує 15% (табл. 1).

Розрахунки й експериментальні дослідження показали, що екіпаж тепловоза ТЕП 150 за динамічними показниками відповідає нормативним вимогам: коефіцієнти вертикальної й горизонтальної динаміки не перевищують припустимих значень у швидкісному діапазоні до 160 км/год.

Моделюванням руху в прямих ділянках колії встановлено, що при взаємодії коліс зі зношеним профілем і новими рейками спостерігається незначний ріст вертикальних динамічних сил (≤ 5%), однак збільшуються динамічні горизонтальні і рамні сили, горизонтальні поперечні прискорення і переміщення (на 15...30%).

При русі локомотива, що має колеса із прокатом 5 мм, у кривих ділянках по нових рейках і колії в "гарному стані" збільшення показників горизонтальної динаміки не перевищує 10%, проте із погіршенням стану рейкової колії вплив зношування коліс на вказані показники значно зростає і сягає рівня 35%.

Таблиця 1

Зіставлення результатів розрахунку і експериментальних даних за основними динамічними показниками екіпажа тепловоза ТЕП 150

Моделюванням руху в кривих ділянках шляху радіусом 300, 600 і 1000м при різних швидкостях руху і стандартних профілях коліс і рейок встановлено, що бічні і рамні сили, поперечні прискорення кузова і візків монотонно зростають із ростом швидкості руху і визначаються величиною моменту опору повороту візка щодо кузова в плані. Підвищений момент від сил тертя між ковзунами й полімерними накладками в опорних пристроях кузова на візки стало негативно впливає на рівень горизонтальних сил у системі “екіпаж-колія”, ріст бічних і рамних сил становить від 11 до 27%.

Встановлено математичним моделюванням, що для опорних пристроїв кузова на візки екіпажа раціональною величиною коефіцієнту тертя є 0,05...0,07, що зменшує тривалість і рівень силової взаємодії між колісьми і рейками в горизонтальній площині при русі в кривих і прямих ділянках колії.

Моделювання руху в режимі екстреного гальмування при стандартних чавунних і дослідних С-С колодках показало, що застосування пропонованих колодок дозволяє знизити натиснення у два рази при збереженні довжини гальмівного шляху, а також зменшити його при високих швидкостях руху. Стабільний і високий коефіцієнт тертя фрикційного спряження “гальмівна С-С колодка - колесо” дозволяє використати автоматизовану систему управління процесом гальмування, значно зменшити величину дійсного гальмівного шляху і термічний вплив на поверхню катання колеса.

Аналіз результатів математичного моделювання і експериментальних досліджень показав, що для підвищення ефективності гальмування та зниження інтенсивності зношування елементів системи “гальмівна колодка - колесо - рейка” необхідні нові фрикційні матеріали колодок з достатньо високим і стабільним коефіцієнтом тертя, котрі не спричиняли б руйнуючої термічної дії на поверхню катання коліс. Для підвищення зчеплення шляхом поліпшення умов взаємодії в системі “колесо - рейка” необхідно вдосконалювати візкові рейкові екіпажі з метою зниження моменту опору повороту візків щодо кузова в плані створенням і використанням в опорно-повертальних пристроях антифрикційних матеріалів з достатньо низьким і стабільним коефіцієнтом тертя.

Четвертий розділ присвячений питанням теорії, розробки методів розрахунку і удосконалення фрикційних С-С композитів для гальмівних колодок і накладок механічних гальмівних систем рухомого складу. Аналіз досліджень указує на істотну залежність для відомих матеріалів основного вихідного параметра фрикційного спряження - реалізованого коефіцієнта тертя - як миттєвих, так і середніх його значень, від рівня контактних напружень, швидкості ковзання і температури на поверхні тертя. Температурна напруженість контактної поверхні є інтегральним показником роботи сил тертя на контакті, що визначається питомим навантаженням і відносною швидкістю ковзання, а також теплофізичними властивостями матеріалу гальмівних колодок, зокрема, теплопровідністю.

Ця проблема є однією з найбільш актуальних як для колодкових, так і для дискових гальмівних пристроїв, оскільки при русі на затяжних спусках температура колодок у зоні взаємодії з колесом може досягати більше 1000°С, що відповідає важкому й надважкому режимам роботи фрикційного спряження, а в дискових гальмах у зоні плям припікання фактична температура досягає 800…1000°С.