Смекни!
smekni.com

Механизм поперечно-строгального станка (стр. 4 из 5)

P = 3.14149 * m

Pb = P * Cos(N)

Rf = 0.38 * m

Worksheets(2).Cells(10, 2) = a

Worksheets(2).Cells(11, 2) = h

Worksheets(2).Cells(12, 2) = x1

Worksheets(2).Cells(12, 3) = x2

Worksheets(2).Cells(13, 2) = ha1

Worksheets(2).Cells(13, 3) = ha2

Worksheets(2).Cells(14, 2) = hf1

Worksheets(2).Cells(14, 3) = hf2

Worksheets(2).Cells(15, 2) = d1

Worksheets(2).Cells(15, 3) = d2

Worksheets(2).Cells(16, 2) = db1

Worksheets(2).Cells(16, 3) = db2

Worksheets(2).Cells(17, 2) = da1

Worksheets(2).Cells(17, 3) = da2

Worksheets(2).Cells(18, 2) = df1

Worksheets(2).Cells(18, 3) = df2

Worksheets(2).Cells(19, 2) = S1

Worksheets(2).Cells(19, 3) = S2

Worksheets(2).Cells(20, 2) = P

Worksheets(2).Cells(21, 2) = Pb

Worksheets(2).Cells(22, 2) = Rf

End Sub

Таблица 3.1 – Параметры зубчатой передачи на ЭВМ

Исходные данные:
Число зубьев шестерни: Z1=14
Число зубьев колеса: Z2=28
Модуль: m=4
Коэффициент головки зуба: ha=1
Коэффициент радиального зазора: C=0,25
Угол профиля зуба рейки: α=20°
Результаты счёта:
Колесо Шестерня
Межосевое расстояние: 84,000
Высота зуба: 13,500
Коэффициент смещения: 0,176 -0,176
Высота головки зуба: 3,312 4,688
Высота ножки зуба: 4,288 5,712
Делительный диаметр: 78,000 174,000
Основной диаметр: 52,636 105,267
Диаметр вершин: 65,424 118,576
Диаметр впадин: 47,324 100,676
Делительная толщина зуба: 10,452 8,397
Делительный шаг: 12,564
Основной шаг: 11,788
Радиус кривизны галтели: 1,521

3.2 Синтез планетарного редуктора

Исходные данные:

Частота вращения двигателя nдв=840 мин-1;

Частота вращения кривошипа nкр=70 мин-1;

Число зубьев шестерни z5=14;

Число зубьев колеса z6=28;

Знак передаточного отношения «- ;

Общее передаточное отношение редуктора:

Передаточное отношение простой передачи z5-z6:

Передаточное отношение планетарной передачи:

Передаточное отношение обращённого планетарного механизма – простого зубчатого ряда:

Формула Виллиса. Передаточное отношение обращённого механизма:

Подбор чисел зубьев планетарной передачи:

Условие соосности для данной передачи:

Принимаем числа зубьев колёс, равных: z1=24; z2=24; z3=48; z4=60.

По принятым числам зубьев определяем диаметры колёс:

Принимаем масштабный коэффициент построения кинематической схемы редуктора:

Скорость точки А зубчатого колеса 1:

Строим планы скоростей. Масштабный коэффициент плана скоростей:

Строим план частот вращения звеньев редуктора. Масштабный коэффициент плана частот вращения звеньев редуктора:

3.3 Определение частот вращения зубчатых колёс аналитическим и графическим методом

Значения частот, полученные аналитическим методом:

Значения частот, полученных графическим методом:

Определяем погрешность расчётов:


4 Синтез и анализ кулачкового механизма

Исходные данные:

Максимальный подъём толкателя h=20мм;

Рабочий угол кулачка φр=280°;

Смещение оси толкателя е=0;

Угол давления α=0;

Частота вращения кривошипа nкр=70 мин-1;

число зубьев шестерни:

число зубьев колеса:

4.1 Диаграмма движения толкателя

По заданному графику скорости толкателя v(t) графическим диффириенцированием по методу хорд получаем ускорение толкателя а=f(t), а графическим интегрированием по методу хорд получаем перемещения толкателя s=f(t).

Базы интегрирования Н1=20мм; Н2=30 мм.

Графики υ(s), a(s), a(υ) получаю методом исключения общего переменного параметра t.

Масштабные коэффициенты диаграмм:

Масштабный коэффициент перемещения:

Масштабный коэффициент времени:

Масштабный коэффициент скоростей:

Масштабный коэффициент ускорений:

4.2 Выбор минимального радиуса кулачка

Минимальный радиус кулачка выбираю из условия выпуклости кулачка. Для этого необходимо, чтобы минимальный радиус был больше ил равен максимальному значению аналога ускорения в отрицательной части графика:

Где

считаем:

4.3 Построение профиля кулачка

Построение профиля кулачка произвожу методом обращённого движения.

Масштабный коэффициент построения:

В выбранном масштабе строю окружность радиуса

. Откладываю фазовый рабочий угол
. Делю этот угол на 13 частей. Через точки деления провожу оси толкателя в обращённом движении. Для этого соединяю точку деления с центром вращения кулачка. Вдоль осей толкателя от окружности минимального радиуса откладываю текущие перемещения толкателя в выбранном масштабе. Через полученные точки провожу тарелки перпендикулярные осям толкателя. Кривая, огибающая все положения тарелок, является профилем кулачка.

4.4 Максимальное значение скорости и ускорения толкателя

4.4.1 Расчёт кулачка на ЭВМ

PublicSubkul()

Dim I As Integer

Dim dis1, dis2, R, a1, a2, arksin1, arksin2, BETTA, BET As Single

Dim R0, FIR, FI0, FII, SHAG, E As Single

Dim S(1 To 36) As Single

R0 = InputBox("ВВЕДИТЕ МИНИМАЛЬНЫЙ РАДИУС КУЛАЧКА RO")

FIR = InputBox("ВВЕДИТЕ РАБОЧИЙ УГОЛ КУЛАЧКА FIR")

FI0 = InputBox("ВВЕДИТЕ НАЧАЛЬНОЕ ЗНАЧЕНИЕ УГЛА ПОВОРОТА КУЛАЧКА FI0")

E = InputBox("ВВЕДИТЕ ДЕЗАКСИАЛ E")

For I = 1 To 36

S(I) = InputBox("ВВЕДИТЕСТРОКУПЕРЕМЕЩЕНИЙ S(" & I & ")")

Next I

FIR = FIR * 0.0174532

SHAG = FIR / 13

FI0 = FI0 * 0.0174532