Смекни!
smekni.com

Механизм долбежного станка с качающейся кулисой (стр. 2 из 2)

nDE =

· μ =
· 0,2 = 0,3 мм

аDEn = nDE · μа = 0,3 · 0,1 = 0,03 м/с2

аDEt = tDE · μа = 8 · 0,1 = 0,8 м/с2

аD = (πd) · μа = 38,1 · 0,1 = 3,81 м/с2

ε1 = 0

ε2 = ε3 =

=
= 13,76 c-2

ε4 =

=
= 4,7 c-2

ε5 = 0

5.3 План ускорений для верхнего крайнего положения

аВ3 = аВ3Ct = аВАn

аВ3 = 4,62 м/с2


; (πе) =
=
= 41,7 мм

аЕ = (πе) · μа = 41,7 · 0,1 = 4,17 м/с2

аDEt = tDE · μа = 9,9 · 0,1 = 0,99 м/с2

аD = (πd) · μа = 38,9 · 0,1 = 3,89 м/с2

ε2 = ε3 =

=
= 14,9 c-2

ε4 =

=
= 5,8 c-2

5.4 План ускорений для нижнего крайнего положения

аВ3 = аВ3Ct = аВАn

аВ3 = 4,62 м/с2


; (πе) =
=
= 41,7 мм

аЕ = (πе) · μа = 41,7 · 0,1 = 4,17 м/с2

аDEt = tDE · μа = 9,9 · 0,1 = 0,99 м/с2

аD = (πd) · μа = 42,2 · 0,1 = 4,22 м/с2

ε2 = ε3 =

=
= 14,9 c-2

ε4 =

=
= 5,8 c-2

6. Кинетостатический расчет механизма

6.1 Определение сил инерции и сил тяжести звеньев

Силы тяжести

,
приложены в центрах масс S3, S5 звеньев и направлены вертикально вниз. Рассчитаем модули этих сил:

G3 = m3 · g = 15 · 9.8 = 147 H

G5 = m5 · g = 8 · 9.8 = 78,4 H

При определении сил инерции и моментов сил инерции воспользуемся построенным планом ускорений для нахождения ускорений центров масс звеньев.

aS3 = aC = 0

aS5 = aD = 1,09 м/с2

Теперь рассчитаем модули сил инерции.

Звено 3 совершает вращательное движение.

FИ3 = m3 · aS3 = 0

MИ3 = JS3 · ε3 = 0,45 · 3,53 = 1,6 H · м

Звено 5 совершает поступательное движение.

FИ5 = m5 · aS5 = 8 · 1,09 = 8,72 Н


Сила инерции

приложена в центре масс S5 звена 5 и направлена противоположно ускорению
. Момент сил инерции
по направлению противоположен угловому ускорению
.

6.2 Определение реакций в кинематической паре 4-5

Что определяется Каким уравнением Для какого звена
1.
4
2.
=0
4, 5
3.
5
4.
(или
)
=0
4 (или 5)

= 0

2.

μF = F / f = 1250 / 125 = 10 Н / мм

F43n = F43 = f43n · μF = 119 · 10 = 1190 H

F50 = f50 · μF = 15,2 · 10 = 152 H

3.

, откуда
=0.

4.

F45 = -F54 = -F43n

F54 = 1190 H


6.3 Определение реакций в кинематической паре 3-2

Что определяется Каким уравнением Для какого звена
1.
2,3
2.
=0
3
3.
=0
2
4.
2

1.

,

=
= - 1704 Н

2.

.

F32 = f32 · μF = 84,7 · 10 = 847 H

F23 = -F32; F23 = 847 H

F30n = f30n · μF = 60 · 10 = 600 H

F30 = f30 · μF = 180,5 · 10 = 1805 H

3.

F21 = -F23 = 847 H

4.

, откуда
=0.

6.4 Определение уравновешивающей силы на кривошипе 1

Что определяется Каким уравнением Для какого звена
1. Fур
1
2.
1

1.

,

=
= 756,7 Н

2.

F10 = f10 · μF = 38,5 · 10 = 385 H


7. Определение уравновешивающей силы с помощью рычага Жуковского

План скоростей для рассматриваемого рабочего положения механизма поворачиваем на 90° в сторону, противоположную вращению кривошипа.

Находим на плане скоростей точку s3, одноимённую точке S3 на механизме.

Все силы, действующие на звенья механизма, включая силы инерции и искомую уравновешивающую силу, переносим параллельно самим себе в одноимённые точки повёрнутого плана. Если на звено действует момент сил, то этот момент следует предварительно представить на звене механизма как пару сил, вычислив их величины:

FM3 =

=
= 4,16 H

Составим уравнение моментов всех сил относительно полюса повёрнутого плана скоростей:

=
= 755,2 Н

Полученную с помощью рычага Жуковского уравновешивающую силу сравниваем с силой, полученной в результате кинетостатического расчёта:

·100% = 0,2% < 5%

Список использованной литературы

1. Артоболевский И.И. Теория механизмов и машин. М., 1975г.

2. Петрова Т.М., Дмитриева Л.Н. Методические указания по теории механизмов и машин «Кинематический и силовой расчет механизма», М., МАМИ, 1990г.