Смекни!
smekni.com

Математическая модель процесса вытяжки трубчатой заготовки (стр. 2 из 3)

Коэффициенты матрицы C зависят от координат r и z точки внутри элемента. Для треугольника с узлами в вершинах координаты r и z можно заменить средними по элементу значениями:

(20)

Вектор напряжений s имеет вид:

(21)

Выразим с помощью линейного закона, выражаемого матрицей жёсткости, напряжения через узловые перемещения

,(21’)

где D – матрица материальных констант.

Потенциальная энергия деформации элемента с учётом (20) и (19)

.(22)

Интеграл в выражении (2.22) есть матрица жёсткости выбранного элемента

,(23)

Элементарный объём

. Поэтому матрица жёсткости элемента записывается следующим образом:

,(24)

где S – площадь элемента.

С учётом проделанных преобразований уравнение равновесия элемента через узловые перемещения выражается в форме:

(25)

где K - матрица жёсткости; P,

- векторы внешних сил и узловых перемещений, соответственно.

При наличии упругих и пластических деформации связь между напряжениями и деформациями нелинейна. Решение нелинейной системы уравнений весьма трудоемко. Поэтому при использовании деформационной теории часто используют кусочно-линейный закон связи напряжений и деформации. Тогда при решении задачи в приращениях напряжений Ds и деформации De, связь между которыми можно считать линейной, получаем систему линейных уравнений:

(26)

Одним из способов решения задачи в приращениях является метод последовательных нагружений. Для квазистатической задачи приращения внешних сил DP вычисляются на шаге по времени Dt. При этом вектор внешних сил P в момент времени t равен:

(27)

где n – шаг нагружения.

Таким образом, с учётом вышеизложённого, вариационное уравнение равновесия в матричной записи принимает вид:

(28)

где

- вектор приращений перемещений.

3. Представление матрицы жёсткости

В пределах упругости связь между приращениями напряжений и деформации выражается законом Гука. Согласно ему компоненты приращений деформации являются линейными функциями приращений напряжений. Пластическое состояние материала описывается теорией малых упругопластических деформации Ильюшина. Принимается теория изотропного упрочнения. Объёмная деформация в пластической зоне остается упругой и для нее выполняется объёмный закон Гука:

,(29)

где q - относительное изменение объёма.

Модуль объёмного сжатия k для изотропного тела в случае осесимметричной деформации имеет вид:

.(30)

Модуль сдвига G связан с модулем Юнга E и коэффициентом Пуассона n формулой:

в упругой области:

(31)

в пластической:

(32)

Здесь H – касательный модуль упрочнения. Коэффициент Ляме - l определяется формулой:

(33)

Таким образом, матрица материальных констант D имеет вид:

.(34)

Следует особо отметить, что использовать матрицу жёсткости в таком виде для пластического состояния можно, только связывая приращения деформации и напряжений, о чем было сказано ранее при выводе уравнения равновесия.

Зная текущее состояние элемента, предел текучести, накопленную деформацию и приращения внешних сил, можно определить изменение напряжённо-деформированного состояния на шаге приращения перемещений Du и сил , используя для вычисления K по формуле ( упругое или пластическое представление матрицы жёсткости.

4. Пластическая деформация

Пластическая деформация твердого тела рассматривается в рамках деформационной теории пластичности. Приняты следующие исходные положения:

¾ тело изотропно;

¾ относительное изменение объёма мало и является упругой деформацией, пропорциональной среднему давлению:

или
;

¾ полные приращения составляющих деформации Deij складываются из приращений составляющих упругой деформации Deeij и пластической деформации Depij:

;

¾ девиаторы приращений напряжения и деформации пропорциональны:

.

Напряжённо-деформированное состояние элемента на i+1 шаге характеризуется интенсивностью деформации ei:

(35)

где eij - компоненты тензора деформации.

Если интенсивность деформации какого - либо конечного элемента превысила текущий предел упругости по деформациям

, то этот элемент переходит из упругого в пластическое состояние. Если материал упрочняется при пластическом деформировании, то соответствующая пределу упругости деформация εе увеличивается на величину Deе(Рис. 7):

(36)

Вычисление предела упругости по деформациям

, достигнутого на шаге k определяется суммированием:

.(37)

Имеется в виду, что в упругой области предел упругости не изменяется, его приращения не вычисляются и равны нулю.

Накопленная пластическая деформация определяется разностью интенсивностей полной деформации ei и деформации ee, соответствующей пределу упругости:

(38)

Излагаемые в дальнейшем итерационные методы для достижения удовлетворительной сходимости требуют соблюдения непрерывности и гладкости кривой упрочнения. Поэтому в конце упругого участка кривой упрочнения введён нелинейно упругий участок, на котором модуль упрочнения вычисляется по формуле:

,(39)

где

- интенсивность деформации, соответствующая пределу пропорциональности.

Соотношение (39) выражает пропорциональное изменение модуля упрочнения при переходе от упругого состояния к пластическому. Предел упругости по напряжениям в этом случае будет определяться соотношением

,(40)

где eеp – деформация в области нелинейной упругости:

.

Вектор приращений компонент тензора напряжения на шаге k в пластическом состоянии определяется по приращениям компонент деформации:

.(41)

Вектор компонент напряжения на шаге k в упругом и пластическом состоянии суммируется по приращениям:

.(42)

Интенсивность напряжений определяется по компонентам тензора напряжения sij:

.(43)

Рис. 2.Изменение предела упругости по деформациям при упрочнении


Если интенсивность деформации уменьшилась:

,(44)

то материал разгружается и переходит в упругое состояние. При нарушении неравенства (2.44) вновь происходит переход элемента в пластическое состояние.

5. Оценка повреждаемости заготовок

Для оценки деформируемости и прогнозирования разрушения заготовок в процессах обработки давлением получила развитие феноменологическая теория разрушения, использование которой основано на полученных опытным путем диаграммах пластичности и информации о напряжённо-деформированном состоянии в процессах обработки металлов давлением.

Оценку деформируемости заготовок, а также расчёт предельных технологических параметров проводят с помощью деформационных критериев, в основу которых положены ограничения, накладываемые на деформации. При этом для процессов, сопровождающихся монотонным, но сложным деформированием, в качестве меры повреждений принимают обычно некоторую скалярную характеристику.