Наступні експериментальні дані відображають вплив радіації на структуру вихідних (не відпалених) аморфних сплавів на основі Fe-Si-B. В табл. 2. наведено результати впливу електронного опромінення (Ф = 2Ч1017 ел/см2) на висоту першого максимуму структурного фактора i(s1) базових сплавів MG-1, MG-5 і легованих – MG-3, MG-8. Істотних змін інших параметрів структурного фактора внаслідок радіаційної обробки сплавів не виявлено. Видно, що більш суттєві зміни висоти першого максимуму структурного фактора спостерігаються в базових сплавах. Тобто, леговані нікелем і молібденом MG-сплави виявляються менш чутливими до дії електронного опромінення. Заслуговує на окрему увагу той факт, що незважаючи на невелику відмінність в хімічному складі, вплив опромінення на i(s1) нелегованих сплавів MG-1 та MG-5 виявляється протилежним.
Висота першого максимуму структурного фактора сплаву MG-1 після радіаційної обробки зменшується, а MG-5 – збільшується. Це зумовило необхідність дослідження дозових залежностей характеристик сплавів.
Таблиця 2
Стан | Сплав | i(s1) | Сплав | i(s1) |
вихідний | MG-1 | 3,65 | MG-5 | 3,49 |
після опромінення | 3,39 | 3,67 | ||
вихідний | MG-3 | 3,79 | MG-8 | 3,74 |
після опромінення | 3,82 | 3,80 |
Видно, що ця залежність має немонотонний характер. Збільшення висоти першого максимуму структурного фактора в АМС внаслідок дії іонізуючої радіації виявлено вперше. Такі зміни i(s1) спостерігаються також при релаксуючій термообробці АМС. При цьому атомна структура сплавів стає більш однорідною, відбувається зменшення вільного об’єму, зняття внутрішніх напружень. Викликані опроміненням атомні зміщення можуть також приводити до таких структурних змін. Тому збільшення висоти першого максимуму структурного фактора в MG‑сплавах може свідчити про радіаційно-стимульовану структурну релаксацію. Зменшення i(s1) внаслідок дії радіації свідчить про розупорядкування структури сплаву. При цьому відбувається зменшення кількості кластерів, що за типом ближнього порядку (БП) належать до переважаючих [1]. Тобто, при взаємодії високоенергетичних електронів з атомною структурою аморфного сплаву відбувається руйнування хімічно упорядкованих атомних утворень з типом БП, що відповідає a-Fe(Si) та Fe3B.
Якісно схожими виявились результати досліджень впливу γ-опромінення на структурний фактор цих же матеріалів. Показано, що радіаційна чутливість висоти першого максимуму структурного фактора легованих сплавів, як і при електронному опроміненні, значно нижча. А дозові залежності i(s1) базових сплавів також немонотонні. Більше того, залежності висоти першого максимуму структурного фактора сплаву MG-1 від дози електронного і γ-опромінення виявились схожими. Це може свідчити про однаковість механізмів дії цих видів радіації на структуру АМС.
В табл. 3 наведено результати впливу електронного опромінення (Ф = 2´1017ел/см2) на температуру Кюрі Тс та температури початку первинної ТX1 та інтенсивної стадії первинної ТX2 кристалізації MG-сплавів, що визначались з температурних залежностей їх намагніченості. При первинній кристалізації в структурі MG-сплавів виділяються кристали α-Fe(Si). Для легованих нікелем та молібденом сплавів MG-3 та MG-8 зміщення температур Кюрі та температур початку та інтенсивної стадії первинної кристалізації під дією електронного опромінення не виявлено. А вплив опромінення на Тс сплавів MG-1 та MG-5 (табл. 3), як і на і(s1) (табл. 2) виявляється протилежним. Для опроміненого сплаву MG-1 спостерігається зменшення Тс на 7 0С, а для MG-5 – збільшення на 18 0С. Однак, викликані дією радіації зміни висоти першого максимуму структурного фактора і температури Кюрі MG-сплавів не корелюють між собою. Дозова залежність температури Кюрі аморфного сплаву MG-1 монотонна.
Ефекти впливу опромінення на температуру початку первинної кристалізації MG-сплавів виражені менш істотно (табл. 3). Для сплаву MG-1 спостерігається зменшення ТХ1 сплаву на 5 0С, а ТХ1 сплаву MG-5 не змінюється. Температура інтенсивної стадії первинної кристалізації ТХ2 помітно зростає (на 15 0С) лише в сплаві MG-5. Залежності ТХ1(Фе) і ТХ2(Фе) сплаву MG-1 немонотонні.
Таблиця. 3
Сплав | Зразок | Тс, 0С | ТX1, 0С | ТX2, 0С |
MG-1 | Контрольний | 386 | 410 | 492 |
Опромінений | 379 | 405 | 495 | |
MG-3 | Контрольний | 369 | 423 | 495 |
Опромінений | 367 | 423 | 494 | |
MG-5 | Контрольний | 340 | 370 | 450 |
Опромінений | 358 | 370 | 465 | |
MG-8 | Контрольний | 252 | 375 | 461 |
Опромінений | 251 | 375 | 460 |
Це також свідчить про реалізацію кількох механізмів впливу опромінення на структуру сплавів. При цьому суттєвих змін зазнають кластери упорядковані за типом α-Fe.
Радіаційно-стимульовані структурні зміни в аморфних металевих сплавах пов’язані з дифузією атомів “легких” елементів, до яких в MG-сплавах належать атоми Si і B. Протилежні зміни Тс в сплавах MG-1 і MG-5 під дією опромінення можуть свідчити про відмінність механізмів радіаційно-стимульованої дифузії атомів цих елементів [2]. Вважається, що В дифундує за міжвузловинним механізмом [3]. Тому збільшення Тс в сплаві MG-5 згідно кривої Бете-Слейтера можна пов’язати з підсиленням обмінної взаємодії внаслідок збільшення відстаней між атомами заліза [3, 4]. Атоми кремнію відіграють роль елементів заміщення. Тому викликане опроміненням зменшення Тс сплаву MG-1, що має вищу концентрацію атомів цього елементу, може бути спричинене зміною кількості координацій Fe-Fe [3].
Незмінність ТХ1 сплаву MG-5 означає, що радіаційно-стимульована дифузія В не виявляє істотного впливу на процес зародження кристалів. Істотне збільшення ТХ2 може свідчити про те, дифузія атомів цього елемента до зародків кристалічної фази призводить до затримки процесу росту кристалів. Зменшення ТХ1 сплаву MG-1 може свідчити про те, що радіаційно-стимульована дифузія Si стимулює процес зародкоутворення. Розчинність цього елемента в α-Fe може бути причиною меншого впливу опромінення на ТХ2 сплаву MG-1. Тому, ймовірно, стимульована опроміненням дифузія Si не виявляє істотного впливу на ріст кристалів.
Менша чутливість структурного фактора, температури Кюрі, температури кристалізації легованих нікелем і молібденом MG-сплавів до дії опромінення свідчить про більшу радіаційну стійкість їх БП. Ймовірно, наявність атомів нікелю і молібдену в структурі цих матеріалів приводить до зменшення радіаційно-стимульованої дифузії Si і В.
4 Результати досліджень впливу опромінення на магнітні характеристики вихідних та термооброблених MG-сплавів та їх часову стабільність
Як відомо, на відміну від структурних характеристик, ефект впливу легування на чутливість початкової магнітної проникності μі до радіаційної обробки виявляється протилежним. Викликані опроміненням зміни μі MG-сплавів тим більші, чим вища концентрація легуючих елементів в їхньому складі, перш за все – молібдену. Найбільші відносні зміни μі (27 – 29 %) спостерігаються для сплаву MG-6, в якому концентрація Ni становить 1 %, а Mo – 3 %. Для сплавів MG-7, MG-8, в яких концентрація атомів Ni становить 3,5 %, а Mo – відповідно, 1 і 3 %, відносні зміни μі становлять 16 – 23 %. Це означає, що радіаційна чутливість початкової магнітної проникності цих матеріалів визначається не змінами інтегральних параметрів БП, а їх концентраційною неоднорідністю. Ймовірно, опромінення приводить до утворення стабільних кластерів навколо атомів молібдену, збагачених атомами найбільш рухливої компоненти сплаву – бору. Можливість появи таких структурних утворень, що є бар’єрами для руху доменних стінок при перемагнічуванні, підтверджується авторами робіт [5, 6]. Збагачені молібденом [5] і бором [6] області утворюються в приповерхневих шарах аморфних стрічок.
Видно, що опромінення приводить до зменшення магнітної проникності при низьких полях (Н ≤ Нμmax). Зміни є більшими в сплаві з вищою концентрацією легуючих елементів. Це також може свідчити про утворення немагнітних включень, а саме збагачених бором кластерів навколо атомів молібдену. Крім того, видно, що криві залежності μ(Н), які відповідають опроміненим зразкам сплавів, є більш плавними. Це може бути підтвердженням радіаційно-стимульованої релаксації, при якій структура сплавів стає більш однорідною, зменшується величина внутрішніх напружень. Радіаційно-стимульована релаксація проявляється також при подальших термообробках. Початкова магнітна проникність відпалених в оптимальному режимі попередньо опромінених сплавів MG-3, MG-8 на 15 % більша, ніж неопромінених. Після проведення ізохронних термообробок легованих сплавів було виявлено, що магнітна проникність попередньо відпалених зразків сплавів в зовнішніх полях Н ≤ Нμmax є вищою, ніж неопромінених . Це може свідчити про те, що поява кластерів в приповерхневих шарах АМС сповільнює процес кристалізації, який починається з поверхонь стрічок [7]. Це підтверджується також даними, наведеними в табл. 4. Видно, що значення і(s1) попередньо опромінених (Ф = 2´1017 ел/см2) зразків легованих MG-сплавів є меншими, ніж неопромінених зразків, відпалених в