Смекни!
smekni.com

Восстановление карданного вала (стр. 2 из 5)

Количество ремонтных размеров бывает от 1 до 3 и ограничивается прочностью деталей. Например, при проточке шеек коленчатого вала под ремонтный размер теряется его прочность.

К достоинствам метода относятся простота технологического процесса, высокая экономическая эффективность. Недостатком метода считаются увеличение номенклатуры запасных частей одного наименования и усложнение организации процесса комплектования деталей и хранения их на складах.

Наплавочные работы широко применяют при восстановлении изношенных деталей. Применение наплавки рабочих поверхностей позволяет не только восстановить размеры детали, но и повысить их долговечность и износостойкость путем нанесения металла соответствующих химического состава и физико-механических свойств.

Процесс наплавки имеет достаточно высокую производительность, прост по техническому исполнению, обеспечивает высокую прочность соединения наплавленного металла с основным.

Сущность процесса наплавки состоит в том, что одним из источников нагрева присадочный металл расплавляется и переносится на наплавляемую поверхность. При этом расплавляется металл поверхностного слоя основного металла и вместе с расплавленным присадочным металлом образует слой наплавленного металла.

Напыление металла представляет собой перенос расплавленного металла на предварительно подготовленную поверхность потоком сжатого воздуха. Расплавленный металл распыляется потоком воздуха на мелкие частицы, которые ударяются о поверхность детали и соединяются с ней, образуя слой покрытия. Соединение с поверхностью носит в основном механический характер, реже — сварочно-наплавочный.

В зависимости от источника нагрева напыление бывает газопламенным, электродуговым, плазменным и др.

Наибольшее применение в ремонтном деле находит плазменное напыление. Источником для расплавления наплавочных материалов служит высокотемпературная плазма.

В качестве напыляемых материалов применяются наплавочные проволоки сплошного сечения, порошковые проволоки или порошки.

Высокое качество напыленного слоя достигается применением аргона или азота для транспортировки порошка в зону плазмы и распыления расплавленного металла. Аргон обеспечивает защиту расплавленного металла от окисления. Для процесса плазменного напыления применяются специальные установки, включающие в себя источник постоянного тока (чаще выпрямитель), плазмотрон и шкаф управления.

Процесс плазменного напыления применяется для восстановления размеров шеек коленчатых валов и других деталей цилиндрической формы.

Достоинства плазменного напыления состоят в следующем: высокое качество покрытия, высокая производительность, возможность регулирования параметров процесса напыления.

К недостаткам необходимо отнести более высокую электроопасность из-за повышенного напряжения дежурной дуги, невысокий к.п.д. процесса.

Гальванические покрытия получают в результате переноса металла из электролита на деталь при пропускании через него постоянного тока. Катодом при этом служит деталь, анодом — металлическая пластина. Электролит представляет собой водный раствор солей металла, осаждаемого на деталь.

Технологический процесс нанесения покрытий состоит из трех периодов: подготовка деталей к нанесению покрытия, нанесение покрытия и обработка детали после покрытия.

При выполнении ремонтных работ восстановление размеров деталей гальваническим наращиванием проводится многими способами, из которых широко применяется осталивание, хромирование, никелирование, цинкование. Из химических способов применение находят оксидирование и фосфатирование.

Осталивание (железнение) представляет собой процесс нанесения железных покрытий на изношенные детали из хлористых электролитов. Электролит состоит из водного раствора хлористого железа 200—680 г/л и небольшого количества соляной кислоты 1—3 г/л. Железные покрытия имеют твердость, близкую к твердости стали.

К достоинствам гальванического наращивания стального покрытия относятся большая скорость нанесения покрытия 0,3 — 0,5 мм/ч, возможность получения слоев высотой 1—5 мм, отсутствие коробления деталей.

Весьма эффективно осталивание применяется при восстановлении посадочных мест под подшипники корпусных деталей: коробка скоростей, корпус двигателя и др.

Способ может быть применен для восстановления посадочных мест зубчатых колес, втулок и т. д.

Могут быть восстановлены шейки коленчатых валов.

Хромирование рабочих поверхностей деталей. В качестве электролита используется водный раствор хромового ангидрида 150— 400 г/л с содержанием 2—3 г/л серной кислоты.

Аноды выполняются из пластин свинца.

Режим хромирования определяется плотностью тока А/дм2 и температурой электролита. При температуре электролита 60—70°С и плотности тока больше 15 А/дм2 получают молочные хромовые покрытия, имеющие низкую твердость и высокую плотность. Такие слои хорошо работают при чисто коррозионном изнашивании. При низкой температуре электролита до 40° С и высокой плотности тока получают матовые хромовые покрытия высокой твердости с тончайшей сеткой трещин. Слои имеют высокую износостойкость. Нанесение твердых матовых хромовых покрытий применяется при ремонте цилиндров двигателей, плунжерных пар топливных насосов дизелей и других деталей. Покрытия компенсируют износ деталей и увеличивают их долговечность.

Для удержания смазки на поверхности цилиндра хромирование должно быть пористым, что обеспечивается специальной технологией.

Коленчатые валы, валы коробок передач и другие детали автомобиля хромируют в ваннах при средней плотности тока 45—60 А/дм2 и температуре электролита 55°С (блестящее хромирование).

К числу недостатков хромирования относятся низкая производительность процесса, невозможность восстановления сильно изношенных деталей, так как хромовые покрытия толщиной более 0,3—0,4 мм имеют низкую прочность сцепления с металлом детали, высокая стоимость покрытий.

Защита крепежных деталей — болтов, гаек, шайб и др. — осуществляется способом цинкования, который вьшолняется в специальных вращающихся барабанах в среде электролита. В состав электролита входят сернокислый натрий, сернокислый цинк, сернокислый аммоний, декстрин.

Оксидирование — процесс получения оксидных пленок толщиной более 0,06 мм с высокой твердостью и износостойкостью. Оксидирование защищает от коррозии.

В состав электролита входят водные растворы едкого натра, азотнокислого натрия.

Из числа химических способов защиты от атмосферной коррозии стальных деталей используется фосфатирование. Защитная пленка состоит из сложных солей фосфора, марганца, железа.

Проводят фосфатирование в водных растворах солей марганца, фосфора.

4.2 Выбор рациональных способов восстановления различных поверхностей деталей

Для восстановления шлицов возможно применение способов наплавки и постановки дополнительной ремонтной детали.

Из рассмотренных методов наплавки метод вибродуговай наплаки дает возможность получения высокой твердости наплавленного слоя при незначительном нагреве детали , в отличии от метода ручной дуговой наплавки . Поэтому для восстановления шлицев применяется метод вибродуговой наплавки.

Для восстановления крестовины используем метод плазменной наплавки, такой способ более производительнее(13 мин) по сравнению с СО2(17,3 мин).Припуск на механическую обработку уменьшается в 1,5-2 раза , Что позволяет экономить наплавочный металл , ресурс восстановления плазменной наплавкой крестовин соответствует ресурсу новых .

Для износа отверстий в вилке под подшипник выберем железнение.


5.Проектирование маршрутов и операций по восстановлению деталей.

5.1 Порядок вибродуговой наплавки

При разработке вибродуговой наплавки необходимо :

1.Подготовить деталь к наплавке

2.Выбрать тип и марку проволоки

3.выбрать толщину наплавляемого слоя

4.Выбрать положение электродной проволоки относительно наплавляемой детали

5.Выбрать величину сварочного тока

6.Выбрать величину расхода охлаждающей жидкости

7.Выбрать источник тока

8.выбрать головку для наплавки

Сталь из которой изготавливается деталь 35Х имеет удовлитварительную проваренность температура предварительного подогрева 100С .

При подогреве детали к наплавке необходимо тщательно очистить поверхность от смазки и других загрязнений .

Деталь очищается от масленой пленки и механических загрязнений . Поэтому возможна очистка методом погружения . Для этого применяется синтетически моющее средство МС-11 . Для достижения требуемой частоты поверхности концентрация раствора должна быть 20-30 г/л , температура раствора 80-100 С , а время очистки 2 минуты .

Электродная проволока выбирается в зависимости от требуемой твердости наплавленного слоя (твердость поверхности шлицев 50 HRC) , поэтому выбираемая проволока Нл-65Г по ГОСТ 10543-63. Она имеет твердость при наплавке в жидкости 36-52 HRC.

Для достижения наибольшей производительности и наивысшей стабильности процесса , наплавка производится проволокой диаметром 1,6-2,5 мм . Принимаем 2мм.

Толщина слоя , подлежащего наплавке , определяется величиной износа, так же учитывается припуск на механическую обработку наплавленного слоя. Т.о. толщина слоя принимается 0,5 мм.

Скорость подачи электродной проволоки для получения оптимальной величины сварочного тока и необходимого количества расплавляемого электродного металла скорость подачи равна 0,017 м/с .