Подвійні термометри застосовуються для вимірювання температури в тому самому місці одночасно двома вторинними приладами, установленими в різних пунктах спостереження. Вони містять два однакових чутливих елементи, з’єднаних у загальні арматури. Термоелектроди ізольований одне від одного і знаходяться у захисному чохлі.
На рис.4.5 показаний устрій термометра типу ТПП. Термоелектроди, що утворюють робочий кінець (спай) 1, ізольовані по довжині порцеляновими трубками 2 і 3 і поміщені в захисний чохол 4, розрахований на атмосферний тиск. Для додання чохлу додаткової міцності неробоча частина його вставлена в сталеву трубку 5. За допомогою сталевих втулок 6 і 7 захисний чохол з'єднаний з корпусом 8, у якому закріплені два затискачі 9 із припаяними до них термоелектродами, ущільненими мастикою 10. Корпус закритий знімною кришкою 11 на різьбленні, ущільненим прокладкою 12. Для уведення в корпус зовнішніх сполучних проводів служить штуцер 13 з ущільненням 14. На поверхні закріплена металева табличка 15, на якій зазначені: тип термометра, допускаємий тиск і кінцеву температуру вимірюваного середовища, матеріал захисного чохла, дата виготовлення термометра і марка підприємства-виробника.
На точність вимірювання термоелектричним термометром великий вплив роблять спосіб установки і правильність проведення перевірки термометра і вторинного приладу.
Одним з основних вимог, які рекомендуються при установці термоелектричного термометра, є досягнення мінімального витоку тепла по його арматурах. Для цього термометр можливо глибше занурюють у вимірювальне середовище, що приводить до збільшення теплосприймаючій поверхні, і розташовується в місцях з великою швидкістю потоку, що поліпшує умови теплообміну.
Рисунок 4.5 - Термоелектричний термометр типу ТПП (А) иТХА (Б)
7. Термометри опору
Для вимірювання температури широке застосування отримали термометри опору, дія яких заснована на зміні електричного опору металевих провідників залежно від температури. Метали, як відомо, збільшують при нагріванні свій опір. Отже, знаючи залежність опору провідника від температури і визначаючи цей опір за допомогою електровимірювального приладу, можна судити про температуру провідника.
Застосовуються технічні (промислові), зразкові і еталонні платинові термометри опору.
Термометр опору, чутливий елемент якого складається з тонкого спірального дроту (обмотки), ізольованого і поміщеного в металевий захисний чохол з головкою для підключення сполучних проводів, є первинним вимірювальним перетворювачем, які живляться від стороннього джерела струму.
Як вторинні прилади, що працюють із термометрами опору, застосовуються врівноважені і неврівноважені вимірювальні мости і магнітоелектричні логометри.
Кінцева межа вимірів дротових термометрів опору, обумовлена стійкістю їх при нагріванні, дорівнює 650°С.
Достоїнствами термометрів опори є: висока точність вимірювання, можливість одержання приладів з безнульовою шкалою на вузький діапазон температур, легкість здійснення автоматичного запису і дистанційної передачі показань і можливість приєднання до одного вторинного приладу за допомогою перемикача декількох однотипних термометрів. До недоліків цих приладів ставиться потреба в стороннім джерелі струму.
8. Пірометри
Пірометри застосовуються для вимірювання температури тіл у діапазоні -30…6000С. Дія цих приладів заснована на залежності теплового випромінювання нагрітих тіл від їхньої температури і фізико-хімічних властивостей. На відміну від термометрів первинний перетворювач пірометра не підпадає під вплив високої температури і не змінює температурне поле, тому що перебуває поза вимірювальним середовищем.
З підвищенням температури нагрітого тіла інтенсивність його теплового випромінювання у вигляді електромагнітних хвиль різної довжини швидко зростає. При нагріванні до 500°С тіло випромінює невидимі інфрачервоні промені великої довжини хвилі, однак подальше збільшення температури викликає появу видимих променів меншої довжини, завдяки яким тіло починає світитися. Спочатку розпечене тіло має темно-червоні кольори, що у міру росту температури і появи променів, що поступово зменшуються за довжиною хвилі, переходить у червоний, жовтогарячий, жовтий і, нарешті, білі кольори, що складається з комплексу променів різної довжини хвилі.
Одночасно зі збільшенням температури нагрітого тіла і зміною його кольору сильно зростає інтенсивність часткового (монохроматичного або одноколірного) випромінювання (яскравість) для даної ефективної довжини хвилі, а також помітно збільшується інтенсивність сумарного випромінювання (радіація) тілом енергії, що дозволяє використовувати ці властивості для вимірювання температури нагрітих тіл.
Різні фізичні тіла, що нагріті до однієї і тієї ж температури, мають неоднакові часткову і сумарну інтенсивності випромінювання і мають різні коефіцієнти поглинання, що представляють собою відношення енергії, поглиненої тілом, до енергії, що падає на тіло.
Найбільшу здатність випромінювання і поглинання енергії має так називане абсолютно чорне тіло, у природі не існуюче, що представляє собою уявлюваний ідеальний випромінювач. Це тіло поглинає всі падаючі на нього промені, тобто має коефіцієнт поглинання, що дорівнює одиниці, і має найбільшу інтенсивність випромінювання. Фізичні тіла мають здатність відбивати частину падаючих на них променів і, отже, завжди мають коефіцієнт поглинання менше одиниці. Інтенсивність випромінювання і коефіцієнт поглинання при даній температурі залежать від складу речовини і стану його поверхні. Тіло, що має темну і шорсткувату поверхню, ближче по своїх властивостях до чорного тіла, чим тіло зі світлою і полірованою поверхнею.
У цьому зв'язку шкалу пірометра доводиться градуювати по випромінюванню чорного тіла. Тому що випромінювальна здатність реальних тіл менше, ніж чорних тіл, то показання пірометра будуть відповідати не дійсній температурі реального тіла, а дають умовну температуру або, у цьому випадку, так називану температуру яскравості. Пірометри, що вимірюють температуру яскравості по спектральній яскравості у видимій частині спектра, називають оптичними (квазімонохроматичні) візуальними пірометрами і фотоелектричними.
Прилади, що вимірюють температуру за значенням відносини енергетичних яскравостей у двох спектральних інтервалах, називають колірними пірометрами або пірометрами спектрального відношення.
Оптичні пірометри широко застосовуються в лабораторних і виробничих умовах для вимірювання температур вище 800°С. Принцип дії оптичних пірометрів заснований на порівнянні спектральної яскравості тіла зі спектральною яскравістю градуйованого джерела випромінювання. Як чутливий елемент, що визначає збіг спектральних яскравостей у візуальних оптичних пірометрах, служать очі людини. Найпоширенішим є оптичний пірометр зі зникаючою ниткою, схема якого наведена на рис.4.6а. Для вимірювання температури об'єктив приладу направляється на об'єкт вимірювання ОИ так, щоб спостерігач на його тлі побачив в окулярі 7 нитку оптичної лампи 4.
Рисунок 4.6
Порівняння спектральних яскравостей об'єкта вимірювання і нитки лампи 4 здійснюються звичайно при довжині хвилі рівної 0,65 мкм, для чого перед окуляром установлений червоний світлофільтр 6. Вибір червоного світлофільтра обумовлений тим, що око людини сприймає через цей фільтр тільки частину спектра його пропущення, що наближається до монохроматичного променя. Крім того, застосування червоного світлофільтра дозволяє знизити нижню межу вимірювання пірометра.
Спостерігаючи за зображенням нитки лампи на тлі об'єкта вимірювання (світлий фон — темна нитка (рис.4.6, б); темний фон — світла нитка (рис.4.6, г)) за допомогою реостата змінюють силу струму, що йде від батареї Б до нитки лампи, доти, поки яскравість нитки не стане рівною видимій яскравості об'єкта вимірювання. При досягненні зазначеної рівності нитка «зникає» на фоні зображення об'єкта вимірювання (рис.4.6, в). У цей момент по шкалі міліамперметра, попередньо градированого в значеннях температури яскравості нитки лампи, визначають яскравісну температуру об'єкта. По обмірюваній яскравісній температурі і відповідних вираженнях розраховують істинну температуру об’єкта.
Звичайно в оптичних пірометрах є дві шкали, однією з яких користуються при не встановленому поглинаючому світлофільтрі, наприклад від 800 до 1200°С, а другий — при встановленому світлофільтрі від 1200 до 2000°С. Існуючі в цей час оптичні пірометри призначені для вимірювання температур в інтервалі від 800 до 6000°С и мають різні модифікації з різними межами вимірювання. Клас точності оптичних пірометрів 1,5-4,0.
На точність вимірювання температури оптичними пірометрами впливають ступінь відхилення властивостей випромінювача від властивостей чорного тіла, а також поглинання променів проміжним середовищем, через яку проводиться спостереження. На результатах вимірювання впливають наявність у навколишнім повітрі пилу, диму і великого змісту двоокису вуглецю. Крім того, усяке забруднення оптичної системи пірометрів також веде до збільшення похибки вимірювання.
Достоїнствами оптичних пірометрів є порівняно висока точність вимірювання, компактність приладу і простота роботи з ними. До числа їхніх недоліків варто віднести потребу в джерелі живлення, неможливість стаціонарного вимірювання температури і автоматичного її запису, а також суб'єктивність методу вимірювання, заснованого на спектральній чутливості очей спостерігача.