Смекни!
smekni.com

Аналитические методы исследования температурных полей (стр. 1 из 2)

РЕФЕРАТ

АНАЛИТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ТЕМПЕРАТУРНЫХ ПОЛЕЙ


Дифференциальное уравнение совместно с начальным и граничным условиями полностью определяют задачу, т.е., зная геометрическую форму тела, начальные и граничные условия, можно дифференциальное уравнение решить до конца и, следовательно, найти функцию распределения температуры в любой момент времени. Таким образом, в результате решения должна быть найдена функция

Т (х, у, z, t) == f (х, у, z, t).

Функция f (х, у, z, t) должна удовлетворять дифференциальному уравнению (при подстановке ее вместо Т в дифференциальное уравнение теплопроводности оно должно обращаться в тождество), а также начальному и граничному условиям.

По теореме единственности решения, если некоторая функция Т (х, у, z, t) удовлетворяет дифференциальному уравнению теплопроводности, начальным и граничным условиям, то она является единственным решением данной задачи.

Методы расчета. Для решения задач теплопроводности применяют аналитические методы и численный метод. Аналитические методы состоят в подборе уравнения процесса, удовлетворяющего дифференциальному уравнению теплопроводности и краевым условиям. Из аналитических методов наиболее часто применяются метод Фурье, метод источников и операторный метод. В дальнейшем мы будем применять только метод источников как наиболее простой и удовлетворительно описывающий распределение температуры во многих случаях нагрева металла при сварке.

Метод источников удобен для решения задач нагрева и охлаждения металла при сварке, связанных с местным выделением тепла. Физическая сущность метода источников состоит в том, что любой процесс распространения тепла в теле теплопроводностью можно представить как совокупность процессов выравнивания температуры от множества элементарных источников тепла, распределенных как в пространстве, так и во времени. Решение задач теплопроводности по этому методу в основном сводится к правильному выбору источников и их распределению.

Существующие аналитические методы дают возможность получать решения только для процессов, описываемых линейными дифференциальными уравнениями при линейных граничных условиях, т.е. для тех случаев, когда коэффициенты теплофизических свойств - теплопроводность λ и объемную теплоемкость сγ, а также коэффициент теплоотдачи α можно считать независящими от температуры. Аналитические методы приводят к общим уравнениям процессов, действительным при разнообразных числовых значениях параметров, характеризующих данную задачу, - геометрических размеров, тепловых характеристик режима нагрева и физических свойств металла. В простейших задачах удается получить решение в замкнутой форме, т.е. выразить уравнение процесса через изученные функции от времени, пространственных координат и постоянных параметров процесса. В более сложных задачах решения описываются определенными интегралами или бесконечными рядами.

Для расчета процессов нагрева и охлаждения металла при сварке выбирают постоянные значения коэффициентов λ, су, а и α, соответствующие некоторой средней температуре процесса. В диапазоне температур сварочного процесса - от температуры плавления металла до температуры окружающего воздуха - теплофизические коэффициенты значительно изменяются, особенно коэффициент теплоотдачи. Средняя температура, которой соответствуют принимаемые для расчета значения теплофизических коэффициентов, определяется из сопоставления опытных данных по измерению температуры с результатами расчета. Для расчета температуры при сварке малоуглеродистой стали следует принимать теплофизические коэффициенты металла λ, су и а, соответствующие средней температуре 400-500°, и коэффициент теплоотдачи α, соответствующий температуре 200-400°.

Основные расчетные схемы нагрева металла сварочными источниками

Хотя процессы распространения тепла в условиях сварки являются чрезвычайно сложными, для их решения в ряде случаев удается применять упрощенные методы, сводящие конкретную задачу к идеальным теоретическим схемам.

Так как характер распространения тепла в теле сильно зависит от его формы и размеров, то для расчетов принимают следующие схемы нагреваемого тела.

1. Бесконечное тело – тело (рис.4.1, а), которое имеет такую протяженность по осям oX, oY, oZ, при которой его границы не влияют на характер теплового поля, т.е. его можно заменить бесконечным телом, у которого имеется неограниченная протяженность по всем трем направлениям.

Рис.4.1. Расчетные схемы теплопроводящего тела и источника тепла при нагреве дугой: а - точечный источник О на поверхности полубесконечного тела; б-точечный источник О на поверхности плоского слоя; в - линейный источник О О' в пластине; г - плоский источник О в стержне.


Схема бесконечного тела тем лучше описывает процесс, чем больше размер реального тела, меньше длительность процесса, чем меньше теплопроводность и чем ближе к источнику расположена расчетная область.

Это понятие используется только для предварительных выводов.

2. Полубесконечное тело – тело, имеющее только одну граничную поверхность z = 0, со стороны которой, как правило, действует источник тепла.

3. Пластина - это тело (рис.4.1, в), ограниченное двумя плоскостями, например, z = 0 и z =

. При использовании этой схемы, всегда предполагают, что температура по толщине листа равномерна, а теплота может распространяться только в плоскости. Схема тем лучше описывает реальное тело, чем оно тоньше, чем больше продолжительность процесса, чем выше теплопроводность и чем дальше от источника расположена зона рассчитываемых температур.

4. Плоский слой - это пластина (4.1, б), у которой температура точек тела по толщине не является равномерной. Эту схему применяют в тех случаях, когда толщина тела не настолько велика, чтобы можно было пренебречь влиянием ограничивающей плоскости z =-

и считать тело полубесконечным.

5. Стержень - это тело (рис.4.1, г), имеющее неограниченный размер по одной из координатных осей и ограниченный размер в направлении двух других осей. При использовании этой схемы предполагается, что температура по поперечному сечению стержня распределена равномерно. Тепловой поток в этом случае линеен.

Схемы источника тепла. Схему источника выбирают сообразно со схемой теплопроводящего тела. При наплавке валика на поверхность массивного изделия (или толстого листа) (рис.4.1, а, б) источник считается сосредоточенным в точке О - центре дугового пятна нагрева. При сварке листов встык (рис.4.1, в) целесообразно считать, что тепло дуги приложено к линейному элементу 00', а при сварке встык стержней (рис.4.1, г) или при нагреве торца электрода к плоскому элементу О. Такая схематизация источника не позволяет рассчитывать процесс распространения тепла в области, непосредственно прилегающей к дуге в начальном периоде процесса, т.е. непосредственно после введения тепла дуги. Для этого нужно более точно учитывать характер распределения тепла источника, например, по схемам нормального распределения

Длительность действия источника тепла.

Источники тепла, встречающиеся в практических случаях сварки, также разнообразны. Их схематизируют так:

А) по признаку распределенности: сосредоточенные (точечный, плоский, объемный) и распределенные (по определенному закону ввода тепла в изделие) источники тепла;

Б) по времени действия: мгновенно и непрерывно действующие;

В) по расположению относительно рассматриваемой точки во времени: неподвижные, подвижные, быстродвижущиеся источники тепла.

Фактически тепловой поток сварных источников тепла всегда распределен по нагреваемой поверхности или объему. Однако, учет распределенности ввода тепла от сварочных источников весьма затрудняет получение формул, удобных для расчетов. Поэтому применяют различные упрощенные схемы точечного, линейного, плоского и объемного источников тепла. Эти упрощения в непосредственной близости от источников значительно искажают температурные поля, а на некотором расстоянии от него дают удовлетворяющую практику сходимость с реальными полями.

Точечный источник тепла - это такой источник, объем которого бесконечно мал и в пределе представляет собой точку.

Линейный источник тепла - это такой источник, у которого тепло равномерно распределено вдоль прямой: можно представить, что тепло в этом случае сконцентрировано в цилиндре с r→ 0.

Плоский источник тепла - это источник тепла, равномерно распределенный по некоторой плоскости.

Поверхностный источник тепла – это источник, поток тепла которого распределен по поверхности свариваемого тела согласно определенному закону.

Объемный источник тепла - источник, равномерно выделяющий тепло в некотором объеме.

Мгновенный источник тепла - это источник, длительность действия которого стремится к нулю (принимается только для общей исходной схемы).

Непрерывно действующий источник тепла - это источник постоянной тепловой мощности, действующей непрерывно или достаточно длительно.

Неподвижный источник тепла - это не перемещающийся в теле (или по телу) источник тепла постоянной мощности.

Подвижный источник тепла - это источник постоянной мощности, перемещающийся в теле или по поверхности тела прямолинейно с постоянной скоростью.

Быстродвижущийся источник тепла - это подвижный источник тепла, перемещающийся с такой скоростью, при которой распространением тепла перед источником можно пренебречь.

Выбор правильной схемы тела и источника тепла определяет возможность приближения расчета к реальным условиям в соответствующих конкретных случаях.

Рассмотрим некоторые расчетные формулы для различных случаев тепловых процессов, имеющих отношение к тепловым расчетам при сварке.