Смекни!
smekni.com

Акустические методы контроля материалов (стр. 3 из 4)

4. Ультразвук в различных средах

Ультразвуковые волны распространяются только в материальной среде. Они характеризуются длиной волны частотой (f) и скоростью распространения (С). Длина волны выражается отношением скорости распространения к частоте колебания.

Частотная граница между звуковыми и ультразвуковыми волнами поэтому условна; она определяется субъективными свойствами человеческого слуха и соответствует усреднённой верхней границе слышимого звука. Однако благодаря более высоким частотам и, следовательно, малым длинам волн имеет место ряд особенностей распространения ультразвука. Так, для УЗВЧ длины волн в воздухе составляют 3,4․10-3-3,4․10-5см, в воде 1,5․10-2-1,5 ․10-4 см и в стали 5․10-2- 5․10-4см. Ультразвуковые колебания низкочастотного диапазона будут приближаться по своим физическим свойствам к звукам, у высокочастотных ультразвуков появляются особенности, не свойственные звукам.. Частотная характеристика и длина волны в значительной мере определяет особенности распространения колебаний в окружающей среде. Если низкочастотные ультразвуки обладают способностью распространяться в воздушной среде, то ультразвуки высокой частоты практически в воздухе не распространяются.

Ультразвук в газах и, в частности, в воздухе распространяется с большим затуханием. Жидкости и твёрдые тела (в особенности монокристаллы) представляют собой, как правило, хорошие проводники ультразвука, затухание в которых значительно меньше. Так, например, в воде затухание ультразвука при прочих равных условиях приблизительно в 1000 раз меньше, чем в воздухе. Поэтому области использования УСЧ и УЗВЧ относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и газах применяют только УНЧ. Ввиду малой длины волны ультразвука на характере его распространения сказывается молекулярная структура среды, поэтому, измеряя скорость ультразвука с и коэффициент поглощения α, можно судить о молекулярных свойствах вещества. Характерная особенность распространения ультразвука в газах и жидкостях - существование отчётливо выраженных областей дисперсии, сопровождающейся резким возрастанием его поглощения. Коэффициент поглощения ультразвука в ряде жидкостей существенно превосходит рассчитанный по классической теории и не обнаруживает предсказанного этой теорией увеличения, пропорционального квадрату частоты. Все эти эффекты находят объяснение в релаксационной теории, которая описывает распространение ультразвука в любых средах и является теоретической базой современной молекулярной акустики, а основной экспериментальный метод - измерение зависимости с и особенно α от частоты и от внешних условий (плотности, упругости, вязкости, температуры и др.). Так, например, при повышении температуры воздуха на 1° скорость увеличивается на 0,5 м/с.

5. Отражение и рассеяние ультразвука

Отражение ультразвука происходит на границе раздела сред с различными акустическими импедансами (комплексное сопротивление, которое вводится при рассмотрении колебаний акустических систем). Величина отражения ультразвука прямо пропорциональна разности акустических импедансов сред. Ультразвук отражается от обьектов, размеры которых составляют не менее 1/4 длины волны. Угол падения ультразвука равен углу отражения. Чем ближе угол падения к 90 градусам, тем больше величина отраженного ультразвука. От способности ткани к отражению зависит качество ее визуализации, в основном контрастность изображения. Коэффициент отражения (КО) определяется отношением акустических импедансов двух смежных сред ткани. В зависимости от соотношения длины волны зондирующего излучения и размеров объектов отражения различают три типа отражателей:

I) Одиночные отражатели, размеры которых меньше длины волны. Они отражают ультразвук в соответствии с рэлеевской теорией диффузного рассеяния во всех направлениях. Амплитуда сигналов, идущих от диффузных отражателей незначительная.

II) Отражатели, размеры которых соизмеримы с длиной волны. В этом случае растет амплитуда эхосигналов.

III) Зеркальные отражатели, размеры которых намного больше длины волны. В этом случае отражение становится направленным, а амплитуда эхосигналов еще более возрастает. В реальных биологических средах присутствуют обычно все три типа отражателей.

Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счете, также вызвать затухание волны в первоначальном направлении распространения.
6. Акустические методы в неразрушающем контроле

Для акустического метода неразрушающего контроля применяют колебания ультразвукового и звукового диапазонов частотой от 50 Гц до 50 МГц. Интенсивность колебаний обычно невелика, не превышает 1 кВт/м2. Такие колебания происходят в области упругих деформаций среды, где напряжения и деформации связаны пропорциональной зависимостью (область линейной акустики).

Кроме упругости по объёму, в твёрдом теле существует упругость по форме, поэтому в теле могут распространяться волны двух типов: продольные и поперечные. Акустические волны в твёрдых телах характеризуются либо смещение, либо колебательными скоростями, либо тензорами деформации или напряжения.

Для контроля применяют разные типы (моды) волн, отличающиеся направлением колебаний частиц, скоростью распространения и другими признаками.

В объёме твёрдого тела, как уже было сказано выше, могут распространяться продольные и поперечные волны. В продольной волне колебательные скорости частиц среды совпадают с направлением распространения волны, в поперечной - перпендикулярны ему.

Известно много акустических методов неразрушающего контроля (рис.5), некоторые применяются в нескольких вариантах. Их делят на две большие группы - активные и пассивные методы.

Активные методы основаны на излучении и приёме упругих волн, пассивные - только на приёме волн, источником которых служит сам контролируемый объект.

Активные методы делят на методы прохождения, отражения, комбинированные (использующие как прохождение, так и отражение), импедансные и методы собственных частот.

Методы прохождения(рис. 6) используют излучающие и приёмные преобразователи, расположенные по разные или по одну сторону контролируемого изделия. Применяют импульсное или (реже) непрерывное излучение и анализируют сигнал, прошедший через контролируемый объект.

К методам прохождения относят:

1. амплитудный теневой метод;

2. временной теневой метод;

3. велосиметрический метод.

Рис. 6 - Методы прохождения: а - теневой; б - временной теневой; в – велосимметрический: 1 - генератор; 2 - излучатель; 3 - объект контроля; 4 - приёмник; 5 - усилитель; 6 - измеритель амплитуды; 7 - измеритель времени пробега; 8 - измеритель фазы

В методах отражения (рис. 7) используют как один, так и два преобразователя; применяют импульсное излучение. К этой подгруппе относят следующие методы дефектоскопии:

1. эхо-метод;

2. эхо-зеркальный метод;

3. дельта-метод;

4. дифракционно-временной метод;

5. ревербирационный метод.


Рис. 7 - Методы отражения:а - эхо; б - эхо-зеркальный; в - дельта-метод; г - дифракционно-временной; д – ревербереционный: 1 - генератор; 2 - излучатель; 3 - объект контроля; 4 - приёмник; 5 - усилитель; 6 - синхронизатор; 7 – индикатор

В комбинированных методах (рис. 8) используют принципы как прохождения, так и отражения акустических волн:

1. зеркально-теневой метод;

2. эхо-теневой метод;

3. эхо-сквозной метод.

Рис. 8 - Комбинированные методы, использующие прохождение и отражение:а - зеркально-теневой; б - эхо-теневой; в - эхо-сквозной: 2 - излучатель; 4 - приёмник; 3 - объект контроля


Методы собственных частот(рис. 9) основаны на измерении этих частот (или спектров) колебаний контролируемых объектов. Собственные частоты измеряют при возбуждении в изделиях как вынужденных, так и свободных колебаний. Свободные колебания обычно возбуждают механическим ударом, вынужденные - воздействием гармонической силы меняющейся частоты.

Рис. 9 - Методы собственных частот. Методы колебаний: вынужденных: а – интегральный, б – локальный; свободных: в – интегральный, г – локальный. 1 - генератор непрерывных колебаний меняющейся частоты; 2 - излучатель; 3 - объект контроля; 4 - приёмник; 5 - усилитель; 6 - индикатор резонанса; 7 - модулятор частоты; 8 - индикатор; 9 - спектроанализатор; 10 - ударный вибратор; 11 - блок обработки информации

Импедансные методы (рис. 10, а) используют зависимость импедансов изделий при их упругих колебаниях от параметров этих изделий и наличия в них дефектов. Пассивные акустические методы основаны на анализе упругих колебаний волн, возникающих в самом контролируемом объекте. Наиболее характерным пассивным методом является акустико-эмиссионный метод (рис. 10, б). Явление акустической эмиссии состоит в том, что упругие волны излучаются самим материалом в результате внутренней динамической локальной перестройки его структуры. Такие явления, как возникновение и развитие трещин под влиянием внешней нагрузки, аллотропические превращения при нагреве или охлаждении, движение скоплений дислокаций, - наиболее характерные источники акустической эмиссии. Контактирующие с изделием пьезопреобразователи принимают упругие волны и позволяют установить место их источника (дефекта).