Прогинання w визначається за формулою (30), а безрозмірне зусилля у першому наближенні без урахування конусності шпарини - за формулою (25). При цьому
Після переходу до безрозмірних змінних рівняння (41) залишиться незмінним, зміниться лише значення постійної
:Використовуючи більш точніший вираз (24) для навантаження на диск та значення статичного кута повороту
, можна отримати додаткові малі поправки до постійних та . Таким чином, деформації стінок камери за своїм впливом на систему еквівалентні стисливості рідини.Рівняння регулятора
Знайдемо тиск
з рівняння (40)та підставимо його у рівняння (41). Одержимо
На підставі формули (25) при постійному впливі
та варіація врівноважуючої сили пов’язана з варіацією тиску простим співвідношенням . Таким чином, з точністю до постійного множника останнє рівняння є рівнянням регулятора, а його передавальна функція є динамічною жорсткістю врівноважуючого пристрою: (43)У сталому стані
тобто одержуємо статичну жорсткість. Якщо не враховувати інерцію рідини (Т3 = 0), то динамічна жорсткість виражається характерною для гідростатичних опор передавальною функцією інтегро-диференціальної ланки, аналогом якої є модель стандартного лінійного твердого тіла: (44)При стрибкоподібній зміні впливу
динамічна жорсткість визначається лише пружністю рідини у камері гідроп’яти:тобто є жорсткістю умовно непроточної опори.
Рівняння системи
За передавальними функціями об’єкта регулювання (36) та регулятора (43) побудована структурна схема системи (рис .24) та виконані її еквівалентні перетворення.
Рисунок 24 - Структурна схема врівноваженого пристрою та її еквівалентне перетворення
У результаті одержана еквівалентна передаточна функція системи
(45)та її рівняння
яке з урахуванням виразів (36) та (43) зводиться до вигляду
де особистий оператор системи та оператор впливу рівні:
(46) (47)Якщо враховувати інерцію рідини у торцевому зазорі, то власний оператор системи матиме п’ятий порядок.
Амплітудна частотна характеристика
Частотна передавальна функція системи
де з урахуванням операторів (46) після розділення дійсної і уявної частин
Амплітудна та фазова частотні характеристики системи виражаються формулами
Для прикладу побудовані амплітудні частотні характеристики (рис. 25), що відповідають реальному врівноважуючому пристрою з постійними часу:
. З графіків видно, що резонансні властивості системи проявляються лише в області високих частот причому зі збільшенням густини рідини Т3 та жорсткості віджимного пристрою власні частоти зростають.Аналіз динамічної стійкості
Прирівнюючи до нуля власний оператор системи, одержимо характеристичне рівняння
,для якого умови стійкості Гурвіца мають вигляд
(48)Перша група умов
завжди виконується, оскільки Умова (48) з урахуванням значень коефіцієнтів (47) містить дев’ять незалежних параметрів та одержати зручний для практичного використовування зв’язок між ними не вдається. Чисельний аналіз 30 варіантів з різними поєднаннями параметрів показав, що стабілізуючий вплив на систему дають . Інерція ротора Т1, а також інерція Т3 і пружність Т4 рідини знижують стійкість.Сила інерції рідини у циліндровому зазорі пропорційна квадрату частоти вимушених осьових коливань системи, основна складова яких має частоту обертання ротора. У зв’язку з цим при порівняно низьких частотах обертання можна для орієнтовних розрахунків взяти Т3=0, дещо компенсуючи помилку, що вводиться, припущенням, що Т2=0. У цьому випадку порядок системи зменшується
, а умова стійкості після підстановки коефіцієнтів з рівняння (47) наберає вигляду та зводиться до простого обмеження, що накладається на об’єм камери гідроп’яти:Беручи до уваги, що
,одержимо
З урахуванням формул (19) за умови
, у положенні статичної рівновагиВиразимо об’єм через характерний осьовий розмір V=HS2. При цьому спрощена умова стійкості
(49)З нього можна визначити допустимий об’єм камери, а потім перевірити, чи виконується умова (48). Перевірку потрібно робити для граничних значень сталого зазору
одержаних у статичному розрахунку.Умова (49) якісно підтверджується експериментальними дослідженнями стійкості кільцевого упорного підшипника із зовнішнім наддуванням, де провідність живильних дроселів ототожнюється з провідністю g1 кільцевого дроселя перед розвантажувальним диском.
Коефіцієнт демпфірування c, що входить до постійної Т2, можна оцінити лише орієнтовно, враховуючи тільки демпфірування у торцевому зазорі [18]
(50)де
- динамічний коефіцієнт в’язкості.Дійсний коефіцієнт демпфірування більше розрахункового через турбулентну течію у зазорі, а також додаткових сил в’язкого опору, що діють на ротор в ущільненнях та підшипниках, що трохи збільшує запас стійкості. Обчислення демпфірувальних та інерційних сил у торцевому зазорі при турбулентній течії з урахуванням обертання диска та відхилень від плоскої форми - важлива та цікава задача, розв’язання якої дозволить одержати більш повні та точні динамічні характеристики гідростатичних пристроїв.