Прогинання w визначається за формулою (30), а безрозмірне зусилля у першому наближенні без урахування конусності шпарини - за формулою (25). При цьому
Після переходу до безрозмірних змінних рівняння (41) залишиться незмінним, зміниться лише значення постійної
Використовуючи більш точніший вираз (24) для навантаження на диск та значення статичного кута повороту
Рівняння регулятора
Знайдемо тиск
та підставимо його у рівняння (41). Одержимо
На підставі формули (25) при постійному впливі
У сталому стані
При стрибкоподібній зміні впливу
тобто є жорсткістю умовно непроточної опори.
Рівняння системи
За передавальними функціями об’єкта регулювання (36) та регулятора (43) побудована структурна схема системи (рис .24) та виконані її еквівалентні перетворення.
Рисунок 24 - Структурна схема врівноваженого пристрою та її еквівалентне перетворення
У результаті одержана еквівалентна передаточна функція системи
та її рівняння
яке з урахуванням виразів (36) та (43) зводиться до вигляду
де особистий оператор системи та оператор впливу рівні:
Якщо враховувати інерцію рідини у торцевому зазорі, то власний оператор системи матиме п’ятий порядок.
Амплітудна частотна характеристика
Частотна передавальна функція системи
де з урахуванням операторів (46) після розділення дійсної і уявної частин
Амплітудна та фазова частотні характеристики системи виражаються формулами
Для прикладу побудовані амплітудні частотні характеристики (рис. 25), що відповідають реальному врівноважуючому пристрою з постійними часу:
Аналіз динамічної стійкості
Прирівнюючи до нуля власний оператор системи, одержимо характеристичне рівняння
для якого умови стійкості Гурвіца мають вигляд
Перша група умов
Сила інерції рідини у циліндровому зазорі пропорційна квадрату частоти вимушених осьових коливань системи, основна складова яких має частоту обертання ротора. У зв’язку з цим при порівняно низьких частотах обертання можна для орієнтовних розрахунків взяти Т3=0, дещо компенсуючи помилку, що вводиться, припущенням, що Т2=0. У цьому випадку порядок системи зменшується
Беручи до уваги, що
одержимо
З урахуванням формул (19) за умови
Виразимо об’єм через характерний осьовий розмір V=HS2. При цьому спрощена умова стійкості
З нього можна визначити допустимий об’єм камери, а потім перевірити, чи виконується умова (48). Перевірку потрібно робити для граничних значень сталого зазору
Умова (49) якісно підтверджується експериментальними дослідженнями стійкості кільцевого упорного підшипника із зовнішнім наддуванням, де провідність живильних дроселів ототожнюється з провідністю g1 кільцевого дроселя перед розвантажувальним диском.
Коефіцієнт демпфірування c, що входить до постійної Т2, можна оцінити лише орієнтовно, враховуючи тільки демпфірування у торцевому зазорі [18]
де
Дійсний коефіцієнт демпфірування більше розрахункового через турбулентну течію у зазорі, а також додаткових сил в’язкого опору, що діють на ротор в ущільненнях та підшипниках, що трохи збільшує запас стійкості. Обчислення демпфірувальних та інерційних сил у торцевому зазорі при турбулентній течії з урахуванням обертання диска та відхилень від плоскої форми - важлива та цікава задача, розв’язання якої дозволить одержати більш повні та точні динамічні характеристики гідростатичних пристроїв.