Оскільки А, Y, Y1 незалежні, то густина вірогідності випадкової функції
де
Функція розподілу радіального зазору
де
Врівноважувану силу вважатимемо стаціонарною випадковою функцією з густиною вірогідності, що відповідає нормальному закону розподілу,
де
Функція розподілу сили
Використовуючи функції розподілу, за формулою (34) одержимо функцію вірогідності безвідмовної роботи:
Як приклад обчислимо характеристики надійності врівноважуючого пристрою живильного насоса. Параметри пристрою: Т=307 кН, l1=18,8 см, r1=7,5 см, r2=12,5 см, r3=15,5 см, r0=r1, p1= 19 МПа, математичне очікування безрозмірної врівноважуваної сили
За наявною статистикою коефіцієнт варіацій для осьової сили та радіального зазору можна взяти таким що дорівнює 0,2. Тоді
Графік (рис. 23) функції вірогідності безвідмовної роботи F(t) для втулки зі сталі 303X13 має злам кривої при t=t1, відповідній зміні швидкості зростання зазору (рис. 22). Середнє напрацювання, обчислене за формулою (35), склало 9100 годин для сталі 303X13 та 78200 годин - для хромомолібденової сталі. Одержані результати добре узгоджуються з наявними статистичними даними за надійністю розвантажувальних пристроїв [16].
Розглянута методика розрахунку характеристик надійності врівноважуючих пристроїв дозволяє оцінювати вплив тих або інших змін у конструкції вузла, а також може використовуватися як складова частина у розрахунку надійності всієї машини на стадії її проектування.
Виведення рівняння динаміки системи. Рівняння осьових коливань ротора
Якщо вважати ротор жорстким тілом, то рівняння його осьових коливань має вигляд [17]
де с - коефіцієнт демпфірування; k - жорсткість віджимного пристрою; m - маса ротора.
Вводячи безрозмірні змінні, одержимо
де
У операторній формі
а передаточна функція об’єкта регулювання
Рівняння руху рідини
Розглянемо для простоти конструкцію без додаткового дроселя
де L, R - коефіцієнти індуктивного і активного опорів.
Позначимо
Тоді для циліндрового і торцевого дроселів (р3 = 0)
а із закону зміни кількості руху
Якщо виключити перепади тиску, одержимо коефіцієнти індуктивного опору
Оскільки
Витрати виражаються через втрати тиску на подолання активних опорів:
де коефіцієнти гідравлічних втрат
Для циліндрового зазору, користуючись виразами (37) та (38), одержимо нелінійне рівняння стосовно тиску
Тиск на вході вважатимемо постійним: p1 = рб, тому, переходячи до рівняння у варіаціях, одержимо
де
Після диференціювання за часом варіації витрати, угрупування членів та переходу до безрозмірних змінних матимемо (знаком варіації знехтуємо)
Де
У операторній формі
Якщо враховувати інерцію рідини у торцевому зазорі, то аналогічним чином одержимо рівняння першого порядку стосовно тиску
де
Рівняння балансу витрат
Беручи до уваги зміни об’єму камери V при осьових зсувах диска і стиснення в ній рідини при зміні тиску р2, можна записати
де
Е - модуль пружності рідини.
Перейдемо до рівняння у варіаціях, використовуючи одержані вище варіації витрат:
де
З урахуванням формул (28) та (29)
Якщо взяти до уваги деформації диска, то у правій частині рівнянь балансу витрат потрібно додати ще один член, який враховує швидкість зміни об’єму камери через деформації диска: