Смекни!
smekni.com

Автоматический потенциометр с кулачковым механизмом (стр. 3 из 5)

Проектный расчет проводится по условию контактной прочности зубьев колес; при этом определяются основные геометрические размеры передачи.

Проверочный расчет проводится по условию прочности зубьев колес на изгиб.


2.3.1 Выбор материала. Проверка зубьев по контактным напряжениям и напряжениям изгиба

Считая условия работы привода нормальными, по таблице 1.3 [2] принимаем

для шестерни сталь 45 с термообработкой улучшения, а для зубчатого колеса – сталь 45 с термообработкой нормализация. По таблице 1.3 [2]:

а) для шестерни получаем твердость HB1=192…240; средняя НВср1=216, предел прочности σu1=750 МПа; предел текучести σу1=450 МПа;

б) для колеса: НВ2=167...229; средняя НВср2=198, σu2=580 МПа; σу2=320 МПа;

Допускаемое контактное напряжение определяется по формуле

, где

КHL – коэффициент долговечности передачи.

,

NH0=107 циклов, NH∑=60n2Lh

NH0 – базовое число циклов нагружения колес,

NH∑ - расчетное число циклов напряжения,

- частота вращения колеса,

Lh=11∙103 час – срок службы передачи,

NH∑=321,895∙106,

NH0=107, тогда КHL=0,03<1, значит примем КHL=1

σ0Нdim b2 =2НВ+70=466 МПа

предел контактной выносливости для нормализованной и улучшенной стали. SН=1,1, тогда σНadm=423,64 МПа.

2.3.2 Определение основных размеров передачи

1). Определение предварительного межосевого расстояния передачи

Предварительная величина межосевого расстояния определяется из условия контактной прочности зубьев колес по формуле:

u1 – передаточное отношение рассчитываемой зубчатой передачи;

Кнβ – коэффициент, учитывающий неравномерность нагрузки по длине контактных линий. Кнβ=1,0;

Т2 – момент на колесе, Н∙мм

Ψba=b/a – коэффициент ширины зубчатого колеса.

Для открытых передач Ψba=0,1...0,2. Принимаем Ψba=0,16, тогда

Предварительное межосевое расстояние aﺍ=32 мм.

2). Определение основных размеров колес.

Число зубьев шестерни (ведущее колесо) определяется:

, где

m – модуль зубчатого колеса, m=P/π, где Р- окружной шаг.

Модуль зубчатого колеса принимается из интервала (0,01...0,02)aﺍ, т.е. m=(0,01...0,02)∙32=0,32...0,64 мм. По ГОСТ 9563-80 принимаем m=0,4 мм.

Число зубьев колеса

Округляя числа зубьев до целых значений, получим Z1=40, Z2=120.

Определяем диаметры делительных окружностей колес:

d1=m∙z1=0,4∙40=16 мм

d2=m∙z2=0,4∙120=48 мм

Диаметры окружностей выступов:

da1=d1+2∙m=16+0,8=16,8 мм

da2=d2+2∙m=42+0,8=42,8 мм

Фактическое межосевое расстояние:


Ширина венцов зубчатых колес:

Колеса:

b2=Ψba

a=0,16∙32=5,12 мм, принимаем b2=6 мм

Шестерни:

b1=b2+2 мм=6+2=8 мм

Высота зубьев колес:

если m≤1, то h=2,35∙m=2,35∙0,4=0,94 мм

Фактическое передаточное отношение:

такая погрешность допустима.

2.3.3 Проверочный расчет зубчатой передачи

При твердости материалов колес НВ≤350 коэффициент долговечности определяется по формуле

,

причем 1≤КFL≤2,1

NF0 – базовое число циклов перемены напряжений для всех сталей NF0=4∙106.

NF∑ - число перемены напряжений за весь срок службы

NF∑=60∙n2∙Lh=411,3∙106

,

значит примем КFL=1.

Допускаемое напряжение при изгибе:

, где

KFC – коэффициент, учитывающий влияние двухстороннего приложения нагрузки. Считаем передачу нереверсивной, тогда KFC=1.

σ0Flimb=1,8∙НВср – предел выносливости материала колес при изгибе для нормализованной и улучшенной стали.

σ0Flimb1=1,8∙216=389 МПа

σ0Flimb2=1,8∙198=356 МПа

[SF]=1,1 – коэффициент безопасности.

σFadm1=354 МПа

σFadm2=324 МПа

Найдем YF – коэффициент формы зуба, зависящий от числа зубьев колес по таблице на стр. 23 [2]. Z1=40, значит YF1=3,70; Z2=120, YF2=3,60


Проверка прочности зубьев колес на изгиб проводится по тому из зубчатых колес, для которого отношение

меньше, т.е. по ведомому колесу. Формула для проверки прочности зубьев колес на изгиб имеет вид:

, где

- окружная сила на зубьях колес, [H]

- ширина зубчатого венца колеса, [мм]

- коэффициент, учитывающий неравномерность распределения нагрузки по ширине зубчатого венца,

- коэффициент динамической нагрузки.

При твердости НВ≤350

значит, условие прочности на изгиб выполняется. Рассчитанные размеры колес считаем верными.


3. Расчет вала привода (ведомого) на прочность

Существует два метода расчета валика на прочность: проектный и проверочный.

При проектном расчете из условий прочности на чистое кручение (без учета изгиба) по пониженному допускаемому напряжению на кручение (τadm=30...40 МПа для всех марок стали) определяются основные геометрические размеры

валика (диаметры ступеней, длины ступеней и т.д.).

Проверочный расчет валика производится на установленную прочность с определением коэффициента запаса установленной прочности, который должен находиться в пределах 1,5≤S≤2,5.

3.1 Проектный расчет вала

В качестве материала валика принимаем сталь 45 нормализованную (ГОСТ 1050-74), для которой τ=40 МПа, наименьший диаметр вала определяется по формуле:

По стандартному ряду линейных размеров (ГОСТ 6636-69) принимаем наименьший диаметр вала d=7 мм.

Далее разрабатывается конструкция вала. Каждая деталь, устанавливаемая на вал, должна доходить до своего посадочного места свободно, поэтому вал должен быть ступенчатым. Для создания упора подшипников в торцы ступеней вала диаметры d0 прилегающих к подшипникам шеек вала должны быть равны:


d0=dп+(4…6)r, где

r – радиус закругления колец подшипников (таблица 4 [1]).

Принимаем в качестве опоры шариковый радиальный подшипник качения сверхлегкой серии 1000098, у которого d=8 мм, D=19 мм, В=6 мм, r=0,5 мм, С=1750 кН и С0=900 кН – статистическая грузоподъемность, С – динамическая.

d0=8+(4...6)∙0,5=10...11 мм,

принимаем d0=11 мм.

dk≥d0 – диаметр шеек вала под зубчатое колесо,

dk=12 мм, d1>dk, d1=15 мм.

Проводится эскизная компоновка вала (Рис. ). Размеры вала по длине определяются количеством и размерами по длине деталей, устанавливаемых на нем, а также необходимыми зазорами между их торцами. Определим длину ступицы зубчатого колеса:

lст=(1...2)d=8...16, причем

lст=16 (см. далее).

, где

b2 – ширина венцов зубчатого колеса (рассчитана в п. 2.3.2 (1)), b2=6 мм;

В – ширина подшипника, В=6 мм;

∆ - произвольный размер.

d3 – диаметр делительной окружности колеса во второй ступени зубчатой передачи.

d3=m∙Z3,

где

m – модуль колеса,

Z3 – число зубьев.

Выберем число зубьев колеса 3 из формулы:

Z3≥17, значит Z3=40

d3=0,5∙40=20 мм. (модуль принимаем немного больше, чем для первой ступени: m=0,5).

Составляется расчетная схема вала, на которой указываются все силы, действующие на зубчатое колесо, опоры и т.д. и их точки приложения. Все силы приводятся к точкам на оси вала и рассматривается изгиб вала в двух взаимно перпендикулярных плоскостях (Рис ).

3.2 Определение реакций опор и построение изгибающих моментов

Составляем расчетную схему вала и определяем усилия на зубьях колес:

на колесе 2: окружная сила

(Т2 рассчитан в п. 2.3.2 (1), d2 в п. 2.3.2 (2));

радиальная сила


, где

α – угол зацепления, α=200,

на шестерне 3:

Н