Для связи между потокосцеплениями и токами в обмотках воспользуемся законом Ампера, тогда:
(2.3)для статора
(2.4)для ротора.
Уравнения потокосцеплений показывают зависимость от токов в каждой обмотке через взаимоиндукцию. В уравнениях (2.3 и 2.4) коэффициенты
, , , , , являются собственными индуктивностями соответствующих обмоток, все остальные – индуктивности между соответствующими обмотками.Не забывая о том, что системы уравнений (2.1 – 2.4) связывают исключительно скалярные величины, выражение для электромагнитного момента представим в следующем виде [60]:
,(2.5)где
это число пар полюсов рассматриваемого АД.На основании второго закона Ньютона представим уравнение для движения и равновесия моментов на валу АД:
,(2.6)где
– момент инерции на валу АД, – угловая частота вращения ротора, – момент развиваемый АД и – момент приложенный к валу двигателя со стороны нагрузки.Изначально АД является трёхфазной электрической машиной с неявнополюсным ротором. Анализируя режимы работы АД в составе нагрузочного моментного ЭП и совокупность принятых выше допущений можно предположить правомерность использования для математического описания эквивалентной двухфазной модели.
На пути упрощения математического описания АД оказался подходящим метод пространственного вектора, позволяющий существенно упростить и сократить вышеприведённую систему уравнений; метод позволяет связать уравнения (2.1 – 2.6) в единую систему с векторными переменными состояния. Суть метода состоит в том, что мгновенные значения симметричных трёхфазных переменных состояния (напряжение, токи, потокосцепления) можно математически преобразовать так, чтобы они были представлены одним пространственным вектором.
Представим систему уравнений с векторными переменными состояния для случая с произвольной ориентацией системы координат [21, 36]:
(2.7)Здесь
, , , , и - двухэлементные векторы напряжений, токов и потокосцеплений, представленные в произвольно ориентированной ортогональной (двухфазной) системе координат в виде составляющих по координатным осям. Переменная служит для задания произвольной частоты вращения координатной системы. Вспомогательная матричная константа j служит для «переворота» компонентов векторных переменных и позволяет упростить форму записи системы уравнений.Раскрывая содержание пространственных векторов, получаем следующее:
, , , , , , .(2.8)Система координат с принудительной ориентацией по вектору потокосцепления ротора
При решении задач разработки систем управления для АД необходимо рассматривать его имитационную модель с позиций объекта оптимального управления. В теории систем управления асинхронными электроприводами при моделировании АД нашел место уникальный принцип ориентации системы координат по вектору потокосцепления ротора. В данном случае имитационная модель АД приобретает определенное сходство со структурной схемой машины постоянного тока, где возможно раздельное управление магнитным состоянием и моментом на валу двигателя.
Математически условие ориентации применительно выражается следующим образом:
; ; .Уравнения, описывающие АД в системе координат с принудительной ориентацией по вектору потокосцепления ротора.
В системе
представляет собой скольжение системы координат, а соответственно скорость её вращения. Данные параметры определяются в соответствии со следующими выражениями: ; .В системе уравнений переменные с индексами «x» и «y» соответствуют компонентам пространственного вектора в координатной системе с ориентацией по вектору потокосцеплений ротора
. С помощью правил создания и преобразования структурных схем, принятых в теории автоматического управления , представим систему уравнений в виде структурной схемы. На рис. представлена структурная схема, имитационной модели АД в системе координат с ориентацией по вектору потокосцепления ротора .Рисунок 6 - Структурная схема имитационной модели АД в системе координат с ориентацией по вектору потокосцепления ротора
Модель АД, представленная на рис. удобна для реализации и расчёта в любом из прикладных программных продуктов, поддерживающих объектно-структурное моделирование систем (Simulink-Matlab, Windora и т.д.). Для исследования и проверки адекватности созданной модели АД удобно выполнить её реализацию в среде Simulink-Matlab. В данной системе симметричные трёхфазные напряжения, представленные в относительных единицах подвергаются преобразованию Кларка и поступают в виде компонентов пространственного вектора напряжений
и на входы координатного преобразователя Парка-Горева. Формулы для координатного преобразования Парка-Горева, позволяющего реализовать переход от стационарной системы координат к вращающейся представлены ниже:Здесь
, - составляющие пространственного вектора напряжения статора , представленные в стационарной системе координат; , - составляющие вектора напряжения статора , представленные во вращающейся системе координат; - угол поворота вращающейся координатной системы (угол ориентации). Параметр связан с угловой скоростью вращения координатной системы благодаря следующему выражению: