Для одной из основных поверхностей заготовки, имеющей наивысшие требования по точности изготовления, припуски и промежуточные размеры определяются расчетно-аналитическим методом. На остальные поверхности заготовки припуски и допуски назначаются по ГОСТ 7505-89.
Расчет припуска производится в направлении от обработанной поверхности к исходной заготовке.
Для определения припусков и промежуточных размеров детали воспользуемся следующими формулами:
Минимальный припуск на обтачивание цилиндрических поверхностей (двухсторонний припуск):
. (1.5)Минимальный припуск при последовательной обработке противолежащих поверхностей (двухсторонний припуск):
, (1,6)где
Rz – высота микро неровностей поверхностей, оставшихся при выполнении предшествующего технологического перехода, мкм;
Т – глубина дефектного поверхностного слоя, оставшегося при выполнении предшествующего технологического перехода, мкм;
r0 – изменение отклонения расположения, возникшее на предшествующем технологическом переходе, мкм;
eу – величина погрешностей установки при выполняемом технологическом переходе, мкм.
Для заготовок из проката выбирается для Æ150
мм качество поверхности детали Rz=25 мкм, T=150 мкм.Определение минимального припуска при чистовом точении Æ150мм.
Rz i-1=6.3 мкм.
Ti-1=60 мкм.
ri-1=85 мкм.
E=0
Zi min=416 мкм.
Определение минимального припуска при черновом точении Æ150мм.
Rz i-1=200 мкм.
Ti-1=300 мкм.
ri-1=1600 мкм.
E=0
Zi min=4200 мкм.
Определение минимального припуска на линейный размер L=28+0.1 мм.
Для однократного шлифования.
Rz i-1=32 мкм.
Ti-1=30 мкм.
ri-1=5 мкм.
E=0
Zi min=67 мкм.
Определение припуска при чистовом точении.
Rz i-1=50 мкм.
Ti-1=50 мкм.
ri-1=100 мкм.
E=0
Zi min=400 мкм.
Определение припуска при черновом точении.
Rz i-1=125 мкм.
Ti-1=75 мкм.
ri-1=1000 мкм.
E=0
Zi min=2400 мкм.
Для деталей из проката величина пространственной погрешности (кривизна пруткового материала) определяется по формуле:
, (1.7)где
D- кривизна профиля проката, мкм на мм.
l- длина заготовки в мм.
,Минимальный припуск на обработку рассчитываем по формуле:
, (1.8) , (1.9)Минимальные (максимальные) промежуточные размеры определяют методом прибавления (для валов) или вычитания (для отверстий) минимальных (максимальных) значений промежуточных припусков:
Dmin i-1=Dmin i+2Zmin i, Dmax i-1=Dmax i+2Zmax i,
где
Dmin i-1 и Dmax i-1 – предельные размеры по предшествующим операциям, мм.
Dmin i и Dmax i – предельные размеры по выполняемым операциям, мм. 2Zmin i и 2Zmax i – предельные припуски по выполняемым операциям, мм.
Таблица.1.6.
маршрут обработки | Элементы припуска | Расчетный припуск (мкм) | Размер после перехода (мм) | Допуски на промежуточный размер (мм) | Принятые размеры по переходам | Предельные размеры припусков | |||||
Rzi-1 | Ti-1 | ri-1 | ei-1 | ||||||||
max | min | max | min | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 2 |
ПрокатТочение:черновоечистовое | 20063 | 30060 | 160085 | -- | 4200416 | 154.4150.2149.8 | 40.40.25 | 158150.6149.8 | 154150.2149.6 | 7.40.74 | 3.80.59 |
ПрокатТочение:черновоечистовоешлифование | 1255032 | 755030 | 10001005 | --- | 240040067 | 30.8728.4728.0728.01 | 1.20.40.250.01 | 3228.8728.3228.01 | 30.828.4728.0728 | 3.130.550.31 | 2.330.40.07 |
Подробно приведем разработку операции 020.
1 установить и закрепить деталь в патроне.
2 подрезать торец 6 за два прохода.
3 точение поверхности 3 за два прохода.
4 подрезать торец 4 с образованием поверхности 5.
5 точить канавку 1.
6 расточить отверстие 2 за два прохода.
Деталь крепится в патроне 7102-0078 ГОСТ 24351-80
Для обработки поверхности 6 берем резец 2102-0191, режущая часть которого выполнена из твердого сплава Т15К6 ГОСТ 21151-75.
Для обработки поверхности 3 берем резец 2102-03111, режущая часть которого выполнена из твердого сплава Т15К6 ГОСТ 21151-75.
Подрезать торец 4 с образованием поверхности 5 берем резец 2120-0019, режущая часть которого выполнена из твердого сплава Т15К6 МИ 595-64.
Точить канавку 1 берем резец 2310-0020, режущая часть которого выполнена из твердого сплава Т15К6 ГОСТ 18876-73.
Расточить отверстие 2 берем резец 2141-0058, режущая часть которого выполнена из твердого сплава Т15К6 ОСТ 18283-73.
Для первого перехода используется штангенциркуль ШЦ1-125-0.1 ГОСТ 166-80.
Для второго перехода используется микрометр МК 175-1 ГОСТ 64507-78.
Для третьего перехода используется штангенциркуль ШЦ2-160-0.1 ГОСТ166-80 и глубомер индикаторный ГОСТ 7661-67.
Для четвертого перехода используется штангенциркуль ШЦ2-160-0.1 ГОСТ166-80.
Для пятого перехода используется штангенциркуль ШЦ1-125-0.1 ГОСТ166-80.
1 переход
Черновое точение торцевой поверхности:
t=1.5 mm – глубина резания.
d=158 mm – диаметр заготовки.
Режимы резания определяются табличным методом.
S=0.6 mm/об.
V=Vтабл.*k=157*1,4=220м/мин.
Определяем частоту вращения шпинделя.
Чистовое точение:
t=0.5 mm – глубина резания.
Режимы резания определяются табличным методом.
S=0.2 mm/об.
V=Vтабл.*k=230*1,4=322м/мин.
Определяем частоту вращения шпинделя.
2 переход
Черновое точение:
t=3.7 mm – глубина резания.
d=158 mm – диаметр заготовки.
Режимы резания определяются табличным методом.
S=0.5 mm/об.
V=Vтабл.*k=114*1,4=160м/мин.
Определяем частоту вращения шпинделя.
Чистовое точение:
t=0.3 mm – глубина резания.
d=150,6 mm – диаметр заготовки
Режимы резания определяются табличным методом.
S=0.15 mm/об.
V=Vтабл.*k=270*1,4=378м/мин.
Определяем частоту вращения шпинделя.
3 переход
t=2.6 mm – глубина резания.
d=150 mm – диаметр заготовки.
Режимы резания определяются табличным методом.
S=0.25 mm/об.
V=Vтабл.*k=107*1,4=149,8м/мин.
Определяем частоту вращения шпинделя.
4 переход
t=2.5 mm – глубина резания.
d=150 mm – диаметр заготовки.
Режимы резания определяются табличным методом.
S=0.25 mm/об.
V=Vтабл.*k=107*1,4=149,8м/мин.
Определяем частоту вращения шпинделя.
5 переход
Растачивание отверстия
t=2.5 mm – глубина резания.
d=108 mm – диаметр заготовки
Режимы резания определяются табличным методом.
S=0.5 mm/об.
V=Vтабл.*k=114*1,4=160 м/мин.
Определяем частоту вращения шпинделя.
Растачивание отверстия
t=2.5 mm – глубина резания.
d=115 mm – диаметр заготовки
Режимы резания определяются табличным методом.
S=0.3 mm/об.
V=Vтабл.*k=198*1,4=277,2 м/мин.
Определяем частоту вращения шпинделя.
Наибольшая сила резания возникает при наибольшем снятии припуска. В данном расчете наибольший припуск снимается во втором переходе, где Р=7.4 мм.
. (1.10)для силы Рz
. (1.11)Kp=0.84*1*1.1*1*1=0.924
x=1 y=0.75 n=-0.15
где KgP=1.1 KlP=1 KjP=1 KGR=1 KMP=0.84
PZ=10*300*3.71+0.50.75*160-0.15*0.924=3107H
для силы Рy
Kp=0.84*1*1.4*1*1=1.17
x=0.6 y=0.8 n=-0.3
где KgP=1.1 KlP=1 KjP=1 KGR=1 KMP=0.84
Pу=10*240*40.6+0.50.8*160-0.3*0.924=767H
для силы Рx
x=1.05 y=2 n=-0.4
где KgP=1.4 KlP=1 KjP=1 KGR=1 KMP=0.84
Px=10*130*3.71.05+0.50.2*160-0.4*1.17=685H
Мощность резания определяется по следующей формуле.
, (1.12)В проекте разрабатывается система для автоматизации процесса шлифования, для расчета привода его возможностей по управлению и регулированию его параметров необходимо знать силы которые будут возникать в проектируемом узле и которые предстоит компенсировать, и требуемые мощности привода. Рассчитаем их: