Заполнение ВО регулируется автоматически по перегреву пара. Оттаивание ВО проводится горячим паром аммиака по времени.
Предусмотрено следующее блокирование: Включение КМ возможно только после включения водяного насоса и вентилятора КД; После выключения КМ №1 (№2) СВ на линии подачи жидкости в ВО №1 (№2) должен быть закрыт .
По уровню жидкого аммиака в ОЖ проводится аварийное выключение КМ. В РД контролируют и сигнализируют нижний уровень жидкости , а в РЛ нижний и верхний уровни.
Спроектировано автоматическое включение резервного водяного насоса .Узлы контура функциональной схемы автоматизации действуют таким образом.
2.2.1 Контуры регулирования температуры в камере
Контроль температуры воздуха в холодильной камере осуществляется двумя электронными термореле 19б и 23б типа Т419 с датчиками 19а и 23а (медные электрические термометры сопротивления).
Так как датчики контролируют температуру воздуха практически в одной точке камеры , то следует комплектовать этот контур одним двойным электрическим термометром сопротивления (в одном корпусе размещено 2 чувствительных элемента).
Предусмотрена замена термореле Т419 ,которое серийно выпускается в России , на электронное реле температуры (ЭРТ) , которое разрабатывается в институте «Агрохолод».ЭРТ имеет цифровую шкалу, на которой отмечается температура воздуха в камере. Благодаря этому отпадает необходимость в дистанционном контроле температуры воздуха в камере, например, логометром. Термореле 19б управляет КМ №1, а реле 23б КМ №2. Как уже отмечалось, в режиме хранения фруктов находится в работе один КМ. Допустим, что РТ 19б настроено на диапазон поддержания температуры в камере 0¼-1°С. Если температура в камере повысится до 1°С, то ЭРТ включит электродвигатель водяного насоса, вентилятора КД, КМ №1 и открывает СВ YА3. В результате температура воздуха в инерционной камере постепенно снижается.
При 0 °С ЭРТ выключает водяной насос, вентилятор КМ №1 и закрывает СВ YА3. Этим экономится электроэнергия, которую потребляют электродвигатели вентилятора КД и водяного насоса. А закрытый СВ YА3 не позволяет жидкому аммиаку поступать в ВО №1 и переполнять его и ОЖ при не работающем КМ.
Тепло в камеру поступает извне через ограждение и температура воздуха в камере постепенно повышается.
Когда она станет равна 1°С, тогда работа схемы повторяется, то есть данный контур осуществляет двухпозиционное регулирование температуры камере путем пуска и остановки КМ.
Коэффициент рабочего времени КМ составляет 0,9.
Зимой есть возможность поддерживать температуру воздуха в камере при помощи того же термореле 19б, которое будет включать и выключать (при 1°С) электронагреватель №1 ВО №1.
Если в работе находится КМ №1 вместе с ВО №1, то вентилятор ВО №1 работает непрерывно, несмотря на остановки КМ обеспечивая равномерное распределение температуры по объему камеры.
Абсолютно аналогично работает ЭРТ 23б. Это термореле управляет КМ №2, водяным насосом, вентилятором КД и СВ YА7. Термореле 23б зимой управляет электронагревателем №2 ВО №2. В этом случае непрерывно работает вентилятор №2 ВО №2.
Зимой одновременно могут управлять своими электронагревателями термореле 19б и 23б, если один электронагреватель не будет способен поддерживать заданную температуру. При этом вентиляторы ВО №1 и ВО №2 работают непрерывно.
Для удобства наладки и эксплуатации в схеме предусмотрено два термореле.
В данном контуре можно перейти на ручной режим управления КМ, вентиляторами, электронагревателями и СВ.
2.2.2 Контуры автоматического заполнения жидким агентом ВО
Для этого (для каждого ВО) спроектирована автоматическая система регулирования (АСР), которая состоит из реле разницы температур (РРТ) 21а (24а) в комплекте с двумя малоинерционными медными электрическими термометрами сопротивления 40а (42а), 41а (43а) и СВ YА3 (YА7).
В данное время в институте «Агрохолод» разрабатывается РРТ с цифровой шкалой, которая позволяет измерять кипящего агента и пара на выходе из ВО, а также разницу отмеченных (перегрев).
С помощью РРТ задают перегрев, который далее будет автоматически выдерживаться таким образом. Например, РРТ 21а на строен на диапазон 2¼3 °С. Это означает следующее: если перегрев равняется 3°С (ВО не заполненный), то РРТ 21а открывает СВ YА3 и жидкость начнет поступать в ВО №1. Это приведет к постепенному снижению перегрева, степень заполнения ВО увеличится, и когда оно будет равняться 2°С, РРТ даст команду закрыть СВ YА3. Далее работа схемы повторяется. Как видим, и тут осуществляется двухпозиционное регулирование перегрева пара в заданном диапазоне. Абсолютно аналогично работает АСР заполнения ВО №2.
Видно, что перегрев – это средний параметр заполнения ВО. Поддержание его в заданном диапазоне будет заполнение ВО жидким агентом. Таким образом, их теплопередающие поверхности будут эффективно использоваться.
Заметим, что АСР заполнения ВО нормально функционирует только тогда, когда работает КМ. В пусковом режиме они отключены
При выключенном КМ СВ YА3 и YА7 закрывается и описанная АСР не работает.
2.2.3 Узел автоматической защиты компрессоров
Как уже отмечалось, для каждого КМ спроектирован стандартный пульт управления типа ПАК. Этот пульт обеспечивает автоматическое управление и защиту КМ от аварийных режимов работы. На фасаде пульта расположены ключ выбора режима КМ, кнопки, лампа (многоцифровая) сигнализации. К пульту управления присоединяются контакты камерного термореле, а также контакты приборов защиты: реле контроля системы смазки (РКСС) 4а (13а); двухблочное реле давления(ДРД) 5а (14а); реле контроля температуры нагнетания (РТ) 3а (12а) – планируется использовать разработанное в институте «Агрохолод» ЭРТ; реле протока воды (РП) 6а (15а); реле уровня (РУ) 25б, 26б у ОЖ – разработка «Агрохолод».
Срабатывание какого-либо из перечисленных приборов автоматической защиты отключает КМ и при этом включается сигнальная лампа, в которой высвечивается соответствующая цифра, которая показывает по какой причине выключается КМ. Так как ХМ работает в автоматическом режиме, то при аварийной остановке КМ на щитке вахтера включается сигнальная лампа. По этому сигналу вахтер вызывает машиниста, который устраняет причину аварии и включает КМ.
Приборы автоматической защиты работают таким образом. РКСС срабатывает в случае уменьшения перепада давления масла на линии нагнетания масленого насоса и в картере КМ ниже заданного значения.
При уменьшении расхода воды через рубашку КМ, или при полном ее исчезновении срабатывает реле протока воды.
Если температура нагнетания превосходит заданную, то срабатывает РТ нагнетания.
ДРД контролирует давления всасывания агента и давление нагнетания. Это реле имеет два измерительных блока (два сильфона), которые через рычажную систему влияют на одну и ту же пару контактов. Если давление всасывания становится ниже допустимого, из-за чего может произойти всасывание воздуха в систему, что приведет к вспениванию масла, или давление нагнетания становится выше допустимого (это может произвести к разрушению КМ), то это реле отключает электродвигатель КМ.
В ОЖ контролируются верхний и нижний аварийные уровни аммиака. Контакты обоих датчиков присоединены к обоим пультам ПАК потому, что ОЖ это общий сосуд для обеих КМ. Дублирование контроля уровня в ОЖ необходимо для того, чтобы избежать гидравлического удара и тем самым не допустить выхода из строя КМ. Если в процессе работы уровень в ОЖ достигнет верхнего значения, то сработает датчик 25б и выключит КМ. Заметим, что подключение РД к ОЖ значительно снижает возможность повышения уровня в ОЖ до верхнего значения.
2.2.4 Узел сигнализации
На пультах типа ПАК, в отличии от пультов типа УУСК, предусмотрена всего одна газоразрядная лампа, в которой высвечивается несколько цифр. Например, срабатывает РП – КМ остановился, включается эта лампа и в ней высвечивается цифра 1. если высвечивается цифра 2, это, например означает то, что сработало РКСС и т.д.
В схеме автоматизации ХМ предусмотрена сигнализация нижнего уровня в РД (датчик 45б), а также сигнализация нижнего (64б) и верхнего (27б) уровней в РЛ. Эта сигнализация позволяет обслуживающему персоналу наблюдать за уровнем жидкости в основных аппаратах холодильной установки, а также видеть, какое устройство автоматической защиты выключило КМ.
На пультах ПАК имеется также сигнализация про введения узла автоматической защиты КМ в работу.
2.2.5 Узел автоматического включения резервного водяного насоса
В технологической схеме предусмотрено два насоса (один рабочий, другой резервный). Схема автоматизации обеспечивает автоматическое включение резервного водяного насоса таким образом. На общей линии нагнетания водяных насосов установлен электроконтактный манометр 29 а. Если в этой точке давление нагнетания води воды падает ниже допустимого при работающем основном насосе, то электроконтактный манометр реагирует на это и дает команду на автоматическое включение резервного водяного насоса.
2.2.6 Узел оттаивания воздухоохладителей
Оттаивание ВО проводится по времени. Для этого в схеме автоматизации спроектированы два моторных реле времени МКП с максимальной выдержкой – 24 часа.
Оттаивание ВО проводится по очереди с частотой один раз в сутки. Оттаивание продолжается от 20 до 30 минут.
В пусковой период оттаивание ВО проводят вручную, а в режиме хранения – автоматически. Оттаивание проводят горячим паром аммиака, который подается в ВО с линии нагнетания КМ.
В процессе оттаивания ВО №1 работает КМ №2, а при оттаивании ВО №2 работает КМ №1. При этом с помощью 13 – ти СВ составляют соответствующие пути движения агента. Соответствующие положения СВ в процессе ручного и автоматического оттаивания ВО одинаковы. Рассмотри м оттаивание ВО №1 и №2 вручную в пусковом режиме. Например, оттаивание ВО №1 осуществляют таким образом. Выключают КМ 31 и вентилятор №1. КМ №2, вентилятор №2 работают в пусковом режиме, также работают водяной насос и вентилятор №3 КД. С помощью универсального переключателя, который относится к ВО №1, закрывают СВ YА3 (на жидкостной линии) и YА2 (на паровой линии), YА9… YА12, а открывают YА1 и YА4.СВ ВО №2 YА7 и YА6 – открыты, а YА5 и Yа8 – закрыты. Открытый СВ YА13.