Рисунок 20 – приборы с одновитковой трубчатой пружиной
а – схема трубчатой пружины (1 – трубка, 2 – держатель)
б – эллиптическое поперечное сечение;
в-плоскоовальное поперечное сечение
По назначению приборы с одновитковой трубчатой пружиной делятся на рабочие, контрольные и образцовые.
Пределы измерения, классы точности, допустимая температурная погрешность и некоторые другие параметры на отдельные виды приборов устанавливаются стандартами. Основной деталью прибора с одновитковой трубчатой пружиной является согнутая по дуге окружности трубка эллиптического или плоскоовального сечения (рисунок 20). Одним концом трубка заделана в держатель, оканчивающийся ниппелем с резьбой для присоединения к полости, в которой измеряется давление.
Внутри держателя имеется канал, который соединяется с внутренней полостью трубки.
Если в трубку подать жидкость, газ или пар под избыточным давлением, то кривизна трубки уменьшится и она распрямляется; при создании разрежения внутри трубки кривизна ее возрастает и она скручивается.
Один конец трубки закреплен; поэтому при изменении кривизны трубки ее свободный конец перемещается по траектории, близкой к прямой. Свободный конец трубки воздействует на передаточный механизм, который поворачивает стрелку показывающего прибора или перемещает сердечник индукционного телепередаточного датчика.
Свойство изогнутой трубки некруглого сечения изменять величину изгиба при изменении давления в ее полости является следствием изменения формы сечения.
Под действием давления внутри трубки эллиптическое или плоскоовальное сечение, деформируясь, приближается к круговому сечению (малая ось эллипса или овала увеличивается, а большая уменьшается).
Устройство вакуумметра и мановакуумметра с одновитковой трубчатой пружиной ничем не отличается от устройства манометра.
Рабочие приборы с круговой шкалой изготовляются показывающими, без дополнительных устройств, а также с контактным устройством, электрическим или пневматическим датчиком для телепередачи.
Показывающие приборы применяются чаще всего в качестве местных приборов. Электроконтактные манометры применяются для сигнализации о достижении минимального или максимального рабочего давления или для двухпозиционного регулирования.
Электроконтактный манометр по принципу действия аналогичен указывающему манометру с одновитковой трубчатой пружиной. Для сигнализации служит контактный механизм, электрическая схема которого аналогична применяемой в манометрических термометрах.
Контактный манометр может работать только при плавном (без пульсации) изменении давления.
На рисунке 21 показана принципиальная схема бесшкального дифференциального трансформаторного прибора, предназначенного в комплекте со вторичным прибором типа КСД) для дистанционного измерения. Давление воспринимается одновитковой трубчатой пружиной, перемещение свободного конца которой передается плунжеру дифференциально-трансформаторного датчика.
Рисунок 21-схема бесшкального прибора с дифференциально-трансформаторным датчиком: 1 – трубчатая пружина; 2 – плунжер
Основная допустимая погрешность прибора в комплекте со вторичным прибором КСД составляет ±2,5% от верхнего предела измерения (в том числе погрешность самого вторичного прибора не более ±1%.
3.1.4 Мембранные приборы
Приборы с чувствительным элементом в виде гофрированных мембран, мембранных коробок и мембранных блоков применяются для измерения небольших избыточных давлений и разрежений (манометры, напоромеры и тягомеры), а также перепадов давления (дифманометры-расходомеры).
Величина прогиба мембраны является функцией давления, действующего на нее. Зависимость прогиба от давления в общем случае нелинейна.
Число, форма и размеры гофра различны в зависимости от назначения, предела измерения и других факторов. Гофрировка мембраны увеличивает ее жесткость, т.е. уменьшает прогиб при одинаковом давлении.
Величина прогиба мембраны является сложной функцией давления, ее геометрических параметров (диаметра, толщины, числа гофров, их формы), а также модуля упругости материала мембраны.
Ввиду сложности расчета в большинстве случаев характеристика мембраны подбирается опытным путем.
Для увеличения прогиба в приборах для малых давлений (разрежение) мембраны попарно соединяют (сваркой или пайкой) в мембранные коробки, а коробки – в мембранные блоки. Мембранные коробки могут быть анероиднымии манометрическими. Анероидные коробки, применяющиеся в барометрах и барографах, герметизированы и заполнены воздухом или каким-либо газом при очень малом давлении, обычно около 1,33 Па (0,01 мм рт. ст.). Деформация анероидной коробки происходит под действием разности давления окружающей ее среды и давления в полости коробки.
Так как давление в полости коробки очень мало, то можно считать, что ее деформация определяется атмосферным давлением. Деформация анероидной или манометрической коробки равна сумме деформаций составляющих ее мембран.
Для измерения небольших давлений и разрежений до 15680 Па (1600 мм вод. ст.) применяют мембранные тяго- и напоромеры. В этих приборах упругим элементом является коробка из двух гофрированных мембран. Внутренняя полость коробки соединяется с полостью, в которой измеряется давление или разрежение.
Выпускаются несколько типов мембранных тяго- и напоромеров: с концентрической шкалой, с горизонтально-профильной шкалой и с вертикально-профильной шкалой. Каждый из этих типов изготовляется в трех модификациях: напоромеры, тягомеры и тягонапоромеры с нулем посредине шкалы для измерения давлений и разрежений. Все эти виды приборов имеют принципиально одинаковые устройства и отличаются один от другого лишь элементами передаточного механизма и формой корпуса. На рисунке 22 показано устройство тягомера с горизонтально-профильной шкалой.
Трубка 14 соединяет полость мембранной коробки 1 с полостью, в которой измеряется давление. При повышении давления в коробке центр верхней мембраны перемещается вверх; через систему рычагов и тяг это движение передается на вертикальную ось 6, укрепленную в опоре 7. На вертикальной оси закреплена стрелка 8. Перемещение центра мембранной коробки не пропорционально давлению. Для линеаризации характеристики коробки применяется устройство, состоящее из плоской пружины 9, нагружающей мембранную коробку, и кронштейна 10 с установочными винтами 11.
При изгибе пружина 9 опирается на установочные винты 11, вследствие чего изменяется ее рабочая длина, а следовательно, и жесткость. Регулируя при градуировке прибора положение установочных винтов, можно добиться линейной характеристики упругой системы, т.е. равномерности шкалы прибора.
Рисунок 22 – мембранный тягомер с профильной шкалой:
1 – мембранная коробка; 2 и 4 – тяги; 3, 5 и 13 – рычаги; 6 – ось; 7-опора; 8-стрелка; 9 – плоская пружина; 10 – кронштейн; 11 – установочные винты; 12 – винт; 14 – трубка; 15 – пружина
Стрелка на ноль устанавливается при помощи винта 12. Вращая винт 12 в ту или другую сторону, поднимают или опускают рычаг 13, прижимаемый к коническому концу винта пружиной 15. Рычаг 13 перемещает передаточный рычажный механизм прибора, передвигая стрелку прибора вправо или влево до совмещения ее с нулем шкалы.
Основная допустимая погрешность прибора ±2% от верхнего предела шкалы.
На рисунке 23 показана принципиальная схема бесшкального дифманометра-расходомера с двумя металлическими мембранными коробками и с системой электрической дифференциально-трансформаторной передачи показаний на расстояние. Чувствительный элемент прибора состоит из разделительной перегородки 1, в которую ввернуты гофрированные металлические (из нержавеющей стали) мембранные коробки 2 и 3. Коробки составлены из мембран с совпадающими профилями гофрировки. Внутренние полости коробок сообщаются между собой каналом и заполнены дистиллированной водой.
С центром верхней мембранной коробки связан железный сердечник, помещенный в катушках. Сердечник перемещается внутри разделительной трубки, выполненной из немагнитной стали.
Под действием разности давлений в камерах нижняя мембранная коробка сжимается; жидкость из нее через отверстие в перегородке перетекает в верхнюю мембранную коробку, вызывая перемещение верхнего центра и связанного с ним железного сердечника индукционного датчика. Сердечник перемещается до тех пор, пока сила, вызванная перепадом давлений, не уравновесится силами упругой деформации мембранных коробок.
При изменении температуры окружающей среды вода в мембранных коробках соответственно будет перемещать мембраны, а вместе с ними и сердечник.
Рисунок 23 – схема безшкального дифманометра-расходомера с двумя мембранными коробками: 1 – разделительная перегородка; 2 и 3 – мембранные коробки; 4 – сердечник 5 – катушки; 6 – разделительная трубка
Для уменьшения влияния колебаний температуры окружающей среды на показания прибора верхняя мембранная коробка выполняется с большей жесткостью, чем нижняя. Это приводит к тому, что при изменении температуры окружающей среды изменяется в основном объем нижней мембранной коробки.
Если перепад давления превысит расчетную величину или одна из мембранных коробок подвергнется одностороннему давлению, то повреждения мембранной коробки не произойдет, так как коробка, находящаяся в зоне более высокого давления, сожмется до соприкосновения мембран и вытеснит из своей полости всю воду в другую мембранную коробку.