Смекни!
smekni.com

Алюминий и его сплавы. Особенности получения отливок (стр. 1 из 6)

Реферат выполнил студент 2-го курса факультета автомобилестроения,

группа: 4ЗАА5 Кабанов А. М.

Московский Государственный Технический Университет МАМИ

Москва 2010г.

Введение

Достижения промышленности в любом развитом обществе неизменно связаны с достижениями технологии конструкционных материалов и сплавов. Качество обработки и производительность изготовления изделий являются важнейшими показателями уровня развития государства.

Материалы, применяемые в современных конструкциях, помимо высоких прочностных характеристик должны обладать комплексом таких свойств, как повышенная коррозионная стойкость, жаропрочность, теплопроводность и электропроводимость, тугоплавкость, а так же способность сохранять эти свойства в условиях длительной работы под нагрузками.

Научные разработки и производственные процессы в области литейного производства цветных металлов в нашей стране соответствуют передовым достижениям научно-технического прогресса. Их результатом, в частности, явилось создание современных цехов кокильного литья и литья под давлением на Волжском автомобильном заводе и ряде других предприятий. На Заволжском моторном заводе успешно работают крупные машины литья под давлением и усилием запирания пресс-формы 35 МН, на которых получают блоки цилиндров из алюминиевых сплавов для автомашины «Волга».

На Алтайском моторном заводе освоена автоматизированная линия по получению отливок литьем под давлением. В Советском Союзе впервые в мире разработан и освоен процесс непрерывного литья слитков из алюминиевых сплавов в электромагнитный кристаллизатор. Этот способ существенно повышает качество слитков и позволяет снизить количество отходов в виде стружки при их обточке.

Название и история открытия.

Латинское aluminium происходит от латинского же alumen, означающего квасцы (сульфат алюминия и калия (K) KAl(SO4)2·12H2O), которые издавна использовались при выделке кож и как вяжущее средство. Al, химический элемент III группы периодической системы, атомный номер 13, атомная масса 26, 98154. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному — оксид алюминия) сделал еще в 1754г. немецкий химик А. Маркграф. Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом. Получить металлический алюминий смог только в 1825г. датский физик Х. К. Эрстед. Он обработал амальгамой калия (сплавом калия (K) с ртутью (Hg)) хлорид алюминия AlCl3, который можно было получить из глинозема, и после отгонки ртути (Hg) выделил серый порошок алюминия.

Только через четверть века этот способ удалось немного модернизировать. Французский химик А. Э. Сент-Клэр Девиль в 1854 году предложил использовать для получения алюминия металлический натрий (Na), и получил первые слитки нового металла. Стоимость алюминия была тогда очень высока, и из него изготавливали ювелирные украшения.

Промышленный способ производства алюминия путем электролиза расплава сложных смесей, включающих оксид, фторид алюминия и другие вещества, независимо друг от друга разработали в 1886 году П. Эру (Франция) и Ч. Холл (США). Производство алюминия связано с высоким расходом электроэнергии, поэтому в больших масштабах оно было реализовано только в 20-ом веке. В Советском Союзе первый промышленный алюминий был получен 14 мая 1932 года на Волховском алюминиевом комбинате, построенном рядом с Волховской гидроэлектростанцией.

Алюминий чистотой свыше 99, 99% впервые был получен электролизом в 1920г. В 1925 г. в работе Эдвардса опубликованы некоторые сведения о физических и механических свойствах такого алюминия. В 1938г. Тейлор, Уиллер, Смит и Эдвардс опубликовали статью, в которой приведены некоторые свойства алюминия чистотой 99, 996%, полученного во Франции также электролизом. Первое издание монографии о свойствах алюминия вышло в свет в 1967г.

В последующие годы благодаря сравнительной простоте получения и привлекательным свойствам опубликовано много работ о свойствах алюминия. Чистый алюминий нашёл широкое применение в основном в электронике - от электролитических конденсаторов до вершины электронной инженерии - микропроцессоров; в криоэлектронике, криомагнетике.

Более новыми способами получения чистого алюминия являются метод зонной очистки, кристаллизация из амальгам (сплавов алюминия с ртутью) и выделение из щёлочных растворов. Степень чистоты алюминия контролируется величиной электросопротивления при низких температурах.

В настоящее время используется следующая классификация алюминия по степени чистоты:

Обозначение Содержание алюминия по массе, %
Алюминий промышленной чистоты 99, 5 - 99, 79
Высокочистый алюминий 99, 80 - 99, 949
Сверхчистый алюминий 99, 950 - 99, 9959
Особочистый алюминий 99, 9960 - 99, 9990
Ультрачистый алюминий свыше 99, 9990

Общая характеристика алюминия.

Природный алюминий состоит из одного нуклида 27Al. Конфигурация внешнего электронного слоя 3s2p1. Практически во всех соединениях степень окисления алюминия +3 (валентность III). Радиус нейтрального атома алюминия 0, 143 нм, радиус иона Al3+ 0, 057 нм. Энергии последовательной ионизации нейтрального атома алюминия равны, соответственно, 5, 984, 18, 828, 28, 44 и 120 эВ. По шкале Полинга электроотрицательность алюминия 1, 5.

Алюминий — мягкий, легкий, серебристо-белый металл, кристаллическая решетка которого кубическая гранецентрированная, параметр а = 0, 40403 нм. Температура плавления чистого металла 660°C, температура кипения около 2450°C, плотность 2, 6989 г/см3. Температурный коэффициент линейного расширения алюминия около 2, 5·10–5 К–1.

Химический алюминий — довольно активный металл. На воздухе его поверхность мгновенно покрывается плотной пленкой оксида Al2О3, которая препятствует дальнейшему доступу кислорода (O) к металлу и приводит к прекращению реакции, что обусловливает высокие антикоррозионные свойства алюминия. Защитная поверхностная пленка на алюминии образуется также, если его поместить в концентрированную азотную кислоту.

С остальными кислотами алюминий активно реагирует:

6НСl + 2Al = 2AlCl3 + 3H2,

3Н2SO4 + 2Al = Al2(SO4)3 + 3H2.

Алюминий реагирует с растворами щелочей. Сначала растворяется защитная оксидная пленка:

Al2О3 + 2NaOH + 3H2O = 2Na[Al(OH)4].

Затем протекают реакции:

2Al + 6H2O = 2Al(OH)3 + 3H2,

NaOH + Al(OH)3 = Na[Al(OH)4],

или суммарно:

2Al + 6H2O + 2NaOH = Na[Al(OH)4] + 3Н2,

и в результате образуются алюминаты: Na[Al(OH)4] — алюминат натрия (Na) (тетрагидроксоалюминат натрия), К[Al(OH)4] — алюминат калия (K) (терагидроксоалюминат калия) или др. Так как для атома алюминия в этих соединениях характерно координационное число 6, а не 4, то действительные формулы указанных тетрагидроксосоединений следующие:

Na[Al(OH)4(Н2О)2] и К[Al(OH)4(Н2О)2].

При нагревании алюминий реагирует с галогенами:

2Al + 3Cl2 = 2AlCl3,

2Al + 3 Br2 = 2AlBr3.

Интересно, что реакция между порошками алюминия и йода (I) начинается при комнатной температуре, если в исходную смесь добавить несколько капель воды, которая в данном случае играет роль катализатора:

2Al + 3I2 = 2AlI3.

Взаимодействие алюминия с серой (S) при нагревании приводит к образованию сульфида алюминия:

2Al + 3S = Al2S3,

который легко разлагается водой:

Al2S3 + 6Н2О = 2Al(ОН)3 + 3Н2S.

С водородом (H) алюминий непосредственно не взаимодействует, однако косвенными путями, например, с использованием алюминийорганических соединений, можно синтезировать твердый полимерный гидрид алюминия (AlН3)х — сильнейший восстановитель.

В виде порошка алюминий можно сжечь на воздухе, причем образуется белый тугоплавкий порошок оксида алюминия Al2О3.

Высокая прочность связи в Al2О3 обусловливает большую теплоту его образования из простых веществ и способность алюминия восстанавливать многие металлы из их оксидов, например:

3Fe3O4 + 8Al = 4Al2O3 + 9Fe и даже

3СаО + 2Al = Al2О3 + 3Са.

Такой способ получения металлов называют алюминотермией.

Нахождение в природе

По распространенности в земной коре алюминий занимает первое место среди металлов и третье место среди всех элементов (после кислорода (O) и кремния (Si)), на его долю приходится около 8, 8% массы земной коры. Алюминий входит в огромное число минералов, главным образом, алюмосиликатов, и горных пород. Соединения алюминия содержат граниты, базальты, глины, полевые шпаты и др. Но вот парадокс: при огромном числе минералов и пород, содержащих алюминий, месторождения бокситов — главного сырья при промышленном получении алюминия, довольно редки. В России месторождения бокситов имеются в Сибири и на Урале. Промышленное значение имеют также алуниты и нефелины. В качестве микроэлемента алюминий присутствует в тканях растений и животных. Существуют организмы – концентраторы, накапливающие алюминий в своих органах, — некоторые плауны, моллюски.

Промышленное получение: при промышленном производстве бокситы сначала подвергают химической переработке, удаляя из них примеси оксидов кремния (Si), железа (Fe) и других элементов. В результате такой переработки получают чистый оксид алюминия Al2O3 — основное сырье при производстве металла электролизом. Однако из-за того, что температура плавления Al2O3 очень высока (более 2000°C), использовать его расплав для электролиза не удается.

Выход ученые и инженеры нашли в следующем. В электролизной ванне сначала расплавляют криолит Na3AlF6 (температура расплава немного ниже 1000°C). Криолит можно получить, например, при переработке нефелинов Кольского полуострова. Далее в этот расплав добавляют немного Al2О3 (до 10% по массе) и некоторые другие вещества, улучающие условия проведения последующего процесса. При электролизе этого расплава происходит разложение оксида алюминия, криолит остается в расплаве, а на катоде образуется расплавленный алюминий: