Смекни!
smekni.com

Расчет элементов резервуара (стр. 4 из 4)

Двухшарнирная арка.

sк=1843,519/225,6 + 692,56/15388=8,22 кн/см2 <23*0,9=20,7 кн/см2;

Проверка выполнена.

Трехшарнирная арка.

sк=3423,78/225,6 + 1286,2/15388 =15,26 кн/см2<20,7 кн/см2.

Проверка выполнена.

Устойчивость кольца.

Расчет ведется по первому сочетанию нагрузок (в случае, если величина Nк отрицательная величина).

sк= - - <=scrgc ; gc=0,9;

scr= (кн/см2) ; Е=2,1*104.

Двухшарнирная арка.

scr=3*21000*659377/19953 = 5,23 кн/см2 ;

sк= - 392,25/225,6 – 1454,38/15388 = 2,68 кн/см2<5,23 кн/см2;

Устойчивость обеспечена.

Трехшарнирная арка.

sк= - 728,49/225,6 – 2701,08/15388 =3,4 кн/см2<5,23 кн/см2;

Устойчивость обеспечена.

Расчет промежуточного кольца жесткости.

Промежуточные кольца жесткости устанавливаются на корпусе для обеспечения устойчивости стенки.

Расчет кольца на суммарное давление ветра и вакуума.

В данном случае кольцо работает на сжатие и его следует проверить на устойчивость по формуле:

Р0 <= ; где

Р0 = Рвак *1,2 + 1,4*w0*0,5*C=0,000025*1,2+1,4*(0,3/10000)*0,5*1 =0,000051 кн/см2;

Рвак=0,000025 кн/см2 ; w0 =0,3 кн/м2 – скоростной напор ветра в районе Днепропетровска.

С=1;

y0=894 cм – ширина оболочки, с которой передается ветровая нагрузка на кольцо.

Iy – момент инерции сечения ребра отнсительно оси проходящей через центр тяжести сечения.

Iy= Iугол+Fугол2+F - *(x – y)2 39,53+7,39*4,79^2 + 30*4,79^2= 897,41 см4;

S11=Fугол*x =7,39*5,98=44,192 см3;

х=75-z0+tст/2 =7,5-2,02+0,5 =5,98 см ;

у= S11/F = 44,192/37,39=1,181 см;

Проверка :

Р0 =0,0000051 кн/см2< = 0,00000796 кн/см2.

Проверка выполнена.

Радиальный момент в стенке в месте промежуточного ребра.

Mк= = 4,66493056 ;

m=( )^(1/4) = 0,0288;

Р= =0,537410341 ;

s1 = = 18,64 < 23*1 кн/см2;

Напряжение s2 (в кольце и стенке)

s2= =9,4220785 кн/см2 < 23*1 кн/см2;

S=0,6(R*tст)^(1/2) = 26,8 ;

Проверка выполнена.


Сравнение вариантов.

Стенка.

Для выбора варианта сравним массы стенок.

№ п/п Тип стенки Толщины поясов Масса стенки, т Относительная масса,%
1 Однослойная из стали С 255 25+18+17+16+14+12+11+5*10 238,98 100 %
2 Однослойная из стали С 345 17+2*14+12+11+7*10 202,33 84,664 %
3 Однослойная комбинированная (С 255/С 345) 17+2*14+12+11+7*10 202,33 84,644 %
4 Двухслойная стенка (С 255) 12/6+11/6+3*10/6+7*10 224,32 93,8656 %
5 Преднапряженная стенка 16+2*14+3*12+11+5*10 206,73 86,5051 %

Как видно из таблицы, наиболее выгодными являются 2 и 3 варианты, но 2 вариант дороже из-за того, что стенка изготовлена полностью из стали С 345, поэтому принимаем 3 вариант – однослойную комбинированную стенку из сталей С 345 и С 255.

Крыша.

Сравним массы ребер купола:

Расчетная схема Сечение ребра Масса ребер, т Относительная масса , %
3-хшарнирная арка. Двутавр № 20а. 38,04 66,96 %
2-хшарнирная арка . Двутавр № 27а. 56,81 100 %

Принимаем сечение ребра - двутавр № 20а.

Определение максимальной нагрузки «р=g Н», при которой будет достигнуто предельное состояние в зоне «нижнего узла».

В зоне «нижнего узла» напряженное состояние определяется изгибающим моментом «М1» (вдоль образующей), N2 - кольцевое растягивающее усилие, N1 – меридиональное сжимающее усилие.

Момент «М1» определяется методом сил по общеизвестной методике, соответственно следующей расчетной схеме:

N2 =g*y*r

N1=p*r/2

Для резервуара V=20000 м3 (при Н=1788 см, tc=1,6 см,r=1995 см,р=1,54 кг/см2)

M1=459 кгсм; Q1=0,45 кн.

Если предположить, что стенка жестко защемлена (нет ни угла поворота, нисмещения вдоль днища), то

М1=(1-by)

=1555 кгсм;

b=

=0,02275;

m=0,3; r=1995; tc=1,6; p=1,54.

Q=

(2b - 1/H) = 69,8 кг/см;

Напряжение в нижней части стенки

s1= -

-
=2067<3780;

sт=3300 ст.09Г2С-12

Чтобы s1=sт (на краю) надо приложить нагрузку

Рпр=р*к=1,61*3300/s1=2,81 кн/см.

Однако, теоретически, несущая способность стенки не исчерпаема.Она будет исчерпана, когда s=sт по всему сечению,т.е. будет иметь место пластический шарнир:

Причем этому предельному состоянию будет соответствовать предельный момент:

Мт=3300*1,6^2/4=2112 кгсм.

На расстоянии «S» от края будет иметь место максимальное усилие:

N2=3300*1.6=5280кн/см;

qпр=5280/1995=2,628 кг/см2.

Рассмотрим несколько предельных состояний :

В реальном резервуаре «предельное состояние» находится между 1 и 2. Если бы были известны S, P, и Q, то мы знали бы «точно» 1 и 2 предельнные состояния.

При расчете использована методика, изложенная в книге « Листовые конструкции». Приняты следующие допущения:

N2т и М1т – не зависят друг от друга;

Вместо реальной диаграммы принята диаграмма Прандля.

N2т=sт*t; M1т=sт*t2/4; qпр= N2т/r.

Для каждой из схем 1 и 2 рассмотрим условие:

Первая схема.

1. åМа=0; М1т -

+
= 0;

2. åх =0;

+Q – pS = 0;

3. åD=0; dQ*Q - dp*P - dм1т=0.

Вторая схема.

1. 2*М1т -

+
= 0;

2.

+Q – pS = 0;

3. dQ*Q - dp*P - dм1т=0.

Эти системы позволяют найти «р», «S» и «Q».

1 схема: р=4,17 кг/см2; Q=125кг; S=44 см.

2 схема: р=16,7 кг/см2; Q=355,8 кг; S=23,1 см.

В обеих схемах М1т 2112 кгсм.

Тогда в реальном резервуаре:

S=39,5 см; р=10,5 кг/см2; Q=240 кг; М1т=2112 кгсм.

Таким образом, если не учитывать опасность хрупкого разрушения, опасность малоцикловой усталости, то можно считать, что теоретический коэффициент запаса равен:

Кз=

;

Какой коэффициент запаса на самом деле с учетом вышеуказанных факторов пока сказать нельзя.

[В.В.1]