Смекни!
smekni.com

Очистка охлаждающей воды на тепловых и атомных электростанциях (стр. 4 из 6)

Третья ступень ХВО предназначена для получения ХОВ с удельной электропроводностью не более 0,3 мкСм/см. Установка работает в составе станционной ХВО.

Производительность установки 160 м3/ч. При необходимости обеспечивается максимальная производительность 210 м3/ч.

В состав системы входят:

· Три фильтра смешанного действия (ФСД);

· Ловушка ионитов;

· Две ловушки гуммировки;

· Два насоса ХОВ;

· Два дренажных насоса;

· Бак ХОВ;

· Бак – нейтрализатор регенерационных вод;

· Бак слабоминерализованных вод;

· Приемник дренажный;

· Бак NaOH;

· Бак HNO3;

· Эжектор – смеситель кислоты;

· Эжектор – смеситель щелочи;

· Арматура, трубопроводы, КИПиА, электротехническое оборудование.

В ФСД соотношение анионита (An) к катиониту (Kt) равно 1:1.

Катионита 3,14 м3, марка КУ-2-8;

Анионита 2,8 м3, марка АВ-17-8;

Восстановление обменной емкости сорбентов в процессе регенерации осуществляется 5 % - ным раствором NaOH и 5,5 % - ным раствором HNO3. Материал корпуса ФСД – углеродистая сталь. Внутренняя поверхность корпуса покрыта защитным слоем – гуммировкой.

Технические характеристики:

Рабочее давление0,6 МПа

Пробное гидравлическое давление0,9 МПа

Температура рабочей средыменее 40°С

Масса3800 кг

Диаметр корпуса аппарата2000 мм

Фильтр – ловушка предназначен для предотвращения попадания фильтрующего материала в ХОВ.

Бак запаса ХОВ предназначен для сбрасывания избыточного давления поступающей воды после АФ II ступени ХВО на всас насосов и для накопления ХОВ. Бак выполнен из углеродистой стали с внутренним антикоррозионным химическим покрытием.

Баки запаса концентрированных растворов реагентов предназначены для приема и хранения растворов кислоты и щелочи.

Бак нейтрализации регенерационных вод предназначен для сбора отработанных регенерационных растворов.

Насосы обеспечивают подачу ХОВ на фильтр установки. Насосы оснащены КИПиА.

2.5.5 Описание работы ВПУ

Для приготовления осветленной воды в баке – мешалке приготавливается раствор коагулянта, который насосами – дозаторами коагулянта через бак – мерник подается в осветлители (ОСВ1 – ОСВ4). Туда же подается вода на очистку.

Осветленная вода направляется в баки осветленной воды (БОСВ1 – БОСВ4), откуда насосами осветленной воды (НОСВ1-НОСВ3) подается на механические фильтры (МФ1 – МФ6) и на взрыхление фильтров.

Механические фильтры загружены сульфоуглем. Пройдя механические фильтры, вода следует на КФ1, затем на АФ1. Осветленная вода используется также для регенерации и отмывки фильтров. Раствор после регенерации фильтров поступает на узел нейтрализации. Частично обессоленная вода поступает на КФ2. Далее, пройдя декарбонизаторы, вода направляется в баки частично обессоленной воды, откуда насосами частично обессоленной воды подается на АФ2.

Затем вода поступает в баки химически обессоленной воды, откуда насосами перекачивается на фильтры смешанного действия (ФСД).

В осветлителях контролируемым параметром является температура исходного раствора коагулянта (33±1°С). Регулируемым параметром является расход воды через осветлитель, который определяется расходомером, установленным на щите ХВО. Переключение расходомеров осуществляется переключением датчиков расхода.

В механических фильтрах производят контроль расхода воды через фильтр по приборам, установленным на щите ХВО. Окончание фильтроцикла осуществляется по снижению прозрачности осветленной воды менее 90 % или по достижению перепада давления более 0,1 МПа (1,0 кгс/см2).

В КФ и АФ регулируемыми параметрами являются: расход воды, давление на входе и выходе из фильтра.

При работе декарбонизатора следят за содержанием свободной углекислоты в обработанной воде.

В баке – мернике едкого натра регулируется расход щелочи вентилем по показаниям концентратомера, установленного на щите.

Контроль температуры в осветлителе осуществляет контур 1, работающий следующим образом: сигнал с термометра сопротивления ТСМ гр.23 (1а) поступает на вторичный прибор – автоматический уравновешенный мост КСМ4-И (1б).

Регулирование расхода в трубопроводе осуществляют контуры 2, 3, 4, 5, 6, 7, работающие аналогично. Контур 2 работает следующим образом: сигнал с датчика расхода – диафрагмы камерной ДК6-100 (2а) поступает на дифманометр “Сапфир-22ДД” (2б), с которого сигнал подается на вторичный прибор – миллиамперметр АСК М1632 (2в). Далее сигнал поступает на регулятор “Каскад-2” (2г), который обеспечивает регулирование расхода в трубопроводе с помощью исполнительного механизма МЭОБ-21 (2д).

Регулирование уровня в баках осуществляют контуры 8, 9, 10, работающие аналогично. Контур 8 работает следующим образом: сигнал с буйкового уровнемера УБ-ПВ (8а) поступает на электрический датчик ДЭВП – С4А (8б), с которого сигнал подается на вторичный дифференциально-трансформаторный прибор КСД-3 (8в), далее сигнал поступает на регулятор системы “Каскад-2” (8г), который обеспечивает регулирование уровня помощью исполнительного механизма МЭОБ-21 (8д).

Контроль электропроводности на выходе из Н-катионитового фильтра II ступени осуществляет контур 11, работающий следующим образом: сигнал с кондуктометрического концентратомера КК-2 (11а) подается на вторичный прибор – потенциометр КПУ-1 (11в).

2.6 Эффективность работы химводоочистки НВ АЭС

На период с 01.02.96 по 01.02.97 эффективность работы химводоочистки:

1. Принято на ХВО 1,5 × 106 м3 сырой воды.

2. Выработано химобессоленной воды (ХОВ) 0,7 × 106 м3.

3. Извлечено из ХОВ:

· Катионов 3,922 т-экв

· Анионов 3,932 т-экв

4. Затрачено реактивов на производство ХОВ:

· Кислоты 14,941 т-экв

· Щелочи 7,67 т-экв

5. Коэффициенты затрат реагентов на удаление ионных примесей из ХОВ:

· Ккt = 3,81 г-экв H2SO4/(г-экв катионов)

· КAn = 1,95 г-экв NaOH/(г-экв анионов)

2.7 Характеристика и принцип действия ионитного параллельноточного фильтра I ступени ФИПаI – 2,6 – 0,6

ФИПаI – 2,6 – 0,6 - фильтр ионитный параллельноточный I ступени диаметром 2,6 м на расчетное давление 0,6 МПа используется для умягчения обрабатываемой воды, частичного обессоливания и других ионообменных процессов.

Фильтр спроектирован и изготовлен в соответствии с технической документацией предприятия – изготовителя оборудования.

Технические характеристики:

Производительность, м3/час - 130

Давление, МПа

Рабочее - 0,6

Пробное гидравлическое - 0,8

Температура, °С - 40

Емкость корпуса, м3 - 19,2

Фильтрующая загрузка:

Высота, м - 2,5

Объем, м3 - 13,25

Масса, т:

Сульфоугля при =0,65-0,7 т/м3 - 8,6-9,3

Катионита КУ-2 при =0,71 т/м3 - 9,4

Анионита АВ-17 при =0,74 т/м3 - 9,8

Масса конструкции фильтра, т - 4,124

Нагрузочная масса, т - 27,5

Фильтр рассчитан на установку в закрытом помещении и эксплуатацию при положительной температуре и относительной влажности окружающего воздуха при которой обеспечивается отсутствие запотевания поверхности аппарата и трубопроводов.

Ионитный параллельноточный фильтр представляет собой вертикальный однокамерный цилиндрический аппарат.

Фильтр состоит из следующих основных элементов: корпуса, нижнего и верхнего распределительных устройств, трубопроводов и запорной арматуры, пробоотборного устройства и фильтрующей загрузки.

Корпус аппарата состоит из цилиндрической сварной обечайки 1, к которой приварены два штампованных эллиптических днища 2 и 3. К нижнему днищу приварены три опоры. Корпус снабжен двумя лазами диаметром 800 мм, 4 и 5. Вблизи от центра нижнего эллиптического днища фильтра приварен штуцер 6 для гидравлической выгрузки фильтрующего материала, штуцер 7 для гидрозагрузки приварен вверху цилиндрической части корпуса фильтра. К верхнему днищу корпуса фильтра приварены два ушка для поднятия фильтра при его транспортировке и установке на фундамент.

Нижнее РУ, 8 состоит из вертикального коллектора 9 с заглушенными верхними концами, четырех коллекторов – отводов 10, вставленных в радиально расположенные отверстия вертикального коллектора и расположенных, для максимального приближения к днищу фильтра, под углом к горизонтальной плоскости, коллектора отвода приварены к вертикальному коллектору сваркой.

От каждого коллектора – отвода, также под углом к горизонтальной плоскости, отходят перфорированные распределительные трубы 11, по нижней образующей которых расположены отверстия диаметром 8 мм. Отверстия прикрывает приварной желобок с шириной щели 0,4 мм.

Концы распределительных труб, вставленных в отверстия коллекторов – отводов, обжаты на конус, а противоположные концы заглушены.

Верхнее РУ 12 состоит из вертикального коллектора 13, заглушенного снизу и соответствующего количества радиально расположенных перфорированных полимерных труб 14. Наружные концы лучей заглушены и прикреплены к корпусу фильтра. Лучи установлены отверстиями вверх под углом 60 ° к вертикальной оси и строго горизонтально.

Трубопроводы и запорная арматура 15, 16, 17, 18, 19, 20 расположенная по фронту фильтра, позволяет переключить все потоки воды и регенерационного раствора в процессе эксплуатации фильтра и обеспечивают подвод регенерационного раствора, подвод взрыхляющей воды, подвод сжатого воздуха. Гидрозагрузку и гидровыгрузку фильтрующего материала, отвод регенерационного раствора отмывочной воды и первого фильтра.

Пробоотборное устройство расположено по фронту фильтра и состоит из трубок, соединенных с трубопроводами воды, подаваемой на обработку и обработанной воды, вентилей 23, 24, 25 и манометра 21, 22, показывающих давление до и после фильтра.

2.8 Технологический расчет Н-катионитного фильтра I ступени

1. Требуемая площадь фильтрования:

F=Q/W,

где Q – производительность, м3/ч;

W – скорость фильтрования м/ч;