Смекни!
smekni.com

Керамические строительные материалы и изделия (стр. 2 из 5)

[l=0,029 Вт/(м-град)] в 20 раз. Замерзание воды в по­рах материала ведет к дальнейшему резкому возраста­нию его теплопроводности, поскольку теплопроводность льда [l=2,33 Вт/(м-град)] больше теплопроводности абсолютно плотного керамического черепка l= =1,163 Вт/(м-град) примерно в 2 раза, больше тепло­проводности воды в 4 раза и больше теплопроводности воздуха в 80 раз.

Паропроницаемость действующими Гостами и ТУ не регламентирована. Однако в некоторых случаях она влияет на долговечность строительных конструкций.

Низкая паропроницаемость стеновых материалов может явиться причиной потения внутренней поверхности стен, особенно в зданиях с повышенной влажностью воздуха. По экспериментальным данным, коэффициент паропро-ницаемости плиток полусухого прессования с водопогло­щением 8,5; 6,5 и 0,25% соответственно равен 0,155; 0,0525; 0,029 г/(м.ч.Па).



В многослойных стенах неодинаковая газопроницаемость отдельных слоев стены может вызвать накопле­ние влаги в ее толще, последующее ее замерзание и от­слаивание части стены (рис. 69). По этой причине не вполне надежна сквозная фасадная облицовка стен гла­зурованными плитками, обладающими низкой газопроницаемостью [52].

. ВИДЫ И ХАРАКТЕРИСТИКИ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ

К стеновым керамическим изделиям относят глиня­ный строительный кирпич и керамические камни.

Согласно ГОСТ 530—71, кирпич глиняный обыкно­венный представляет собой искусственный камень, име­ющий форму параллелепипеда размером 250Х120Х65 мм, изготовленный из глины с добавками или без них и обожженный. Допускается также изготовление по­луторного кирпича толщиной 88 мм с технологическими пустотами и массой не более 4 кг. Практически его из­готовляют очень редко.

Все керамические изделия конструктивного назначе­ния, имеющие размеры больше кирпича, называют кера­мическими камнями.

Кирпич является одним из наиболее древних искусст­венных строительных изделий. Его «возраст» составляет примерно 5000 лет, и до сего времени он продолжает со­хранять значение одного из основных стеновых матери­алов. Его доля в общем балансе стеновых материалов составляет около 40%.

Рис. 70. Виды керамических стеновых изделий

а — обыкновенный кирпич; б — дырчатый кирпич с круглыми пустота­ми; в—щелевой камень; г—готовый камень НИИСтройкерамики с ромбовидными пустотами для панелей; д — щелевой камень ВНИИСТРОМа для панелей


3. ТЕХНОЛОГИЯ КИРПИЧА, ИЗГОТОВЛЯЕМОГО СПОСОБОМ ПОЛУСУХОГО ПРЕССОВАНИЯ

Основным признаком полусухого прессования кера­мических изделий является формование их из порошков путем компрессионного прессования под значительным Удельным давлением 15—40 МПа.

Технологический процесс изготовления изделий этим способом включает следующие группы операций: карь­ерные работы, приготовление пресс-порошка, прессование, сушку и обжиг изделий. Карьерные работы не имеют в этом случае какой-либо специфики и выполняются соответственно горно-эксплуатационным условиям месторождения глин.

3.1. Приготовление пресс-порошка.

Керамическими пресс-порошками называют высококонцентрированные (мало влажные) дисперсные глинистые системы, не обладающие связностью. Отсутствие связности обусловливавливает наиболее характерное свойство порошков—их сыпучесть, т. е. псевдотекучесть в исходном состоянии. Ее характеризуют скоростью истечения порошка под действием собственной массы через отверстие определенного диаметра. Глиняные порошки должны иметь заданный зерновой (грапулометрический) состав и влажность, должны обладать однородной пофракционной влажностью и содержать минимальное количество пылевидной фракции. Все эти характеристики влияют на прессусмость порошка — его способность к максимальному уплотнению при минимальном давлении с образованием при этом изделий, обладающих однородной плотностью, минимальным упругим расширением и отсутствием трещин расслаивания.

Керамические порошки готовят сушнлыю-помольным и шликерным способами.

При сушильно-помольном способе глину подвергают последовательно грубому дроблению, сушке, помолу просеву и увлажнению. Дробят глину на дезинтеграторных вальцах, а сушат в сушильных барабанах прямотоком, так как при противотоке возникает опасность сильного перегрева глины, частичной ее дегидратации, и большой потери пластических свойств. Температура газов t1, поступающих в барабан, составляет обычно 600—800°С. Снижение t1 обеспечивает более однородную пофракционную влажность, но уменьшает производительность барабана. Повышение t1 сверх указанного предела нецелесообразно, так как оно приводит к дегидратации мелкой фракции глины и обусловливает быстрый выход из строя входной секции барабана. Нормальная температура отходящих газов t2 должна быть 110—120 °С. Резкое повышение t2 свидетельствует о перересушке глины. Температура глины, выгружаемой из сушильного барабана, составляет 60—80 °С. Конечная влажность 9—11%.

При прохождении глины через барабан изменяется ее гранулометрический состав. Мелкие фракции, быстро высыхая, истираются до пылевидного состояния, а крупные куски, распариваясь, слипаются и окатываются в крупные комья. Это обусловливает большую влажностную неоднородность высушенной глины, затрудняющую работу помольных машин. Так, при средней влажности 8,5—12% влажность наиболее крупных кусков достига­ет 15,5—19%. К тому же и в пределах одного куска от­мечается значительный перепад влажности. Некоторое повышение равномерности сушки достигается устройст­вом цепных завес в сушильных барабанах, которые час­тично измельчают глину, создавая тем самым условия для более равномерной ее сушки. Но даже и с наличи­ем цепных завес сушильный барабан нельзя считать до­статочно совершенным в технологическом отношении аг­регатом.

Для помола глины в производстве кирпича применя­ют корзинчатые дезинтеграторы. Они работают устойчиво при влажности глины не выше 10%. При более высоком влажности глина налипает па кожух и на пальцы дезинтеграторов. При наличии в глине каменистых включений пальцы корзин быстро изнашиваются и их необходимо менять через 200—300 ч работы.

Тонина помола зависит от частоты вращения корзин дезинтегратора, расстояния между пальцами и влажно­сти глины. Выход мелких фракций возрастает с увели­чением частоты вращения корзин и уменьшением рас­стояния между пальцами. С повышением влажности глины возрастает количество крупных фракций. Так, на­пример, при влажности 10% сумма крупных фракций (остаток на сите 25 отв. на 1 см2) составляет 96%, а при влажности 6% — всего лишь 66%.

Из дезинтеграторов получают рыхлый порошок ма­лой объемной массы, что затрудняет прессование из не­го изделий.

Просеивают глину для отделения крупных зерен по­рошка. Для этого используют струнные сита, барабан­ные грохоты (бураты), качающиеся и вибрационные си­та. На струнных ситах можно отделять только очень крупные куски глины, так как расстояние между сильно натянутыми струнами значительно изменяется вследствии их изгибания.

При подготовке пресс-порошков не всегда удается после помола получить порошок с влажностью, необхо­димой и достаточной для прессования. Чтобы обеспечить производительную работу помольных машин и необхо­димую тонину помола, приходится иногда сушить и мо­лоть глину при влажности несколько ниже прессовоч­ной, а затем порошок вновь увлажнять. Такое увлажне­ние осуществляют распылением воды в глиномешалках или паром в специальных аппаратах.

Основное требование, которое предъявляют к увлаж­няющему аппарату, сводится к тому, чтобы при увлаж­нении порошка глины не образовались комочки переув­лажненного материала, так называемой «изюм». Для этого воду подают в тонко распыленном состоянии, а весь материал при этом перемешивают. Хорошие резуль­таты получаются при увлажнении глины во взвешенном состоянии, т. е. в момент, когда она выходит из бункера в смеситель. При увлажнении глиняного порошка паром качество кирпича намного улучшается: не появляются трещины расслаивания, возрастают прочность и морозостойкость.

Во всех возможных случаях необходимо избегать повторного увлажнения глиняного порошка, так как добиться при этом равномерной влажности его весьма трудно по следующим причинам: в высушенном порошке крупные зерна являются влажными, а мелкие—более сухими. Влажная поверхность имеет всегда более низкую температуру, чем сухая. Поэтому пар в первую очередь конденсируется на более холодной влажной поверхности крупных кусочков глины. Мелкая ее фракция, наиболее сухая, или совсем не увлажняет­ся, или увлажняется в меньшей мере, в результате чего пофракционная влажность порошка не только не вырав­нивается, но иногда даже возрастает.

Для выравнивания влажности подвергают порошок вылеживанию в бункерах. Однако этот процесс протека­ет довольно медленно. В течение суток практически вы­равнивание влажности достигается в пределах одного зерна, а между отдельными зернами оно еще не насту­пает вследствие относительно небольшой контактной поверхности между ними. Кроме того, увлажнение по­верхности зерен порошка снижает его сыпучесть, что в последующем затрудняет его хранение в бункерах и транспортирование. Поэтому процесс вылеживания по­рошка следует считать полезным, улучшающим его прессовочные свойства, но нужно стремиться осуществ­лять этот процесс по возможности без предварительно­го увлажнения порошка.