Другие виды электростанций.
Несмотря на то, что так называемые “нетрадиционные” виды электростанций занимают всего 0.07% в производстве электроэнергии в России развитие этого направления имеет большое значение, особенно учитывая размеры территории страны. Единственным представителем этого типа ЭС является Паужетская ГеоТЭС на Камчатке мощностью 11мвт. Станция эксплуатируется с 1964 года и устарела как морально так и физически. В настоящее время в стадии разработки находится технический проект ветроэнергетической электростанции мощностью в 1 Мвт. на базе ветрового генератора мощностью 16 Квт, выпускаемого НПО “ВетроЭн”. К 2000 году планируется пустить Мутновскую ГеоТЭС мощностью 200 Мвт.
Уровень технологических разработок России в этой области сильно отстает от мирового. В удаленных или труднодоступных районых России, где нет необходимости строить большую электростанцию, да и обслуживать ее зачастую некому, “нетрадиционные” источники электроэнергии - наилучшее решение.
2.Энергосистемы. Единая Энергосистема.
Энергосистема - группа электростанций разных типов и мощностей, объединенная линиями электропередач и управляемая из единого центра.
ЕЭС - единый объект управления, электростанции системы работают параллельно.
Объективной особенностью продукции электроэнергетики является невозможность ее складирования или накопления, поэтому основной задачей энергосистемы является наиболее рациональное использование продукции отрасли. Электрическая энергия, в отличие от других видов энергии, может быть конвертирована в любой другой вид энергии с наименьшими потерями, причем ее производство, транспортировка и последующая конвертация значительно выгоднее прямого производства необходимого вида энергии из энергоносителя. Отрасли, зачастую не использующие электроэнергию напрямую для своих технологических процессов являются крупнейшими потребителями электроэнергии.
ЭнеpгоОбъедиения | Установленная мощность, млн. Квт. | Выpаботка электpоэнеpuии млpд. кВт. ч | ||
1990 | 1991 | 1990 | 1991 | |
ОЭС: | ||||
Центpа | 55.3 | 55.9 | 306.1 | 307.0 |
Сpедней Волги | 22.9 | 23.0 | 114.6 | 113.7 |
Уpала | 40.9 | 40.6 | 260.5 | 252.9 |
Севеpо-Запада | 33.0 | 33.0 | 167.8 | 162.9 |
Севеpного Кавказа | 10.6 | 10.6 | 58.7 | 57.0 |
Сибиpи | 44.3 | 44.6 | 198.4 | 198.3 |
Укpаины | 53.4 | 52.3 | 312.0 | 276.8 |
Закавказья | 12.3 | 12.9 | 63.0 | 62.1 |
Казахстана | 12.9 | 12.9 | 63.0 | 62.1 |
МолдЭнеpго | 3.0 | 3.0 | 13.0 | 13.2 |
Всего по ЕЭС | 288.6 | 288.2 | 1528 | 1489 |
¨ Таблица 3. Выработка электроэнергии по ЕЭС |
ЕЭС России - сложнейший автоматизированый комплекс электрических станций и сетей, объединенный общим режимом работы с единым центром диспетчерского управления (ДУ). Основные сети ЕЭС России напряжением от 330 до 1150 кВ объединяют в параллельную работу 65 региональных энергосистем от западной границы до Байкала. Структура ЕЭС позволяет функционировать и осуществлять управление на 3х уровнях: межрегиональном (ЦДУ в Москве), межобластном (объединенные диспетчерские управления) и областном (Местные ДУ). Такая иерархическая структура в сочетании с противоаварийной интеллектуальной автоматикой и новейшими компьютерными системами позволяет быстро локализовать аварию без значительного ущерба для ЕЭС и зачастую даже для местных потребителей. Центральный диспетчерский пункт ЕЭС в Москве полностью контролирует и управляет работой всех станций, подключенных к нему.
Единая Энергосистема распределена по 7 часовым поясам и тем самым позволяет сглаживать пики нагрузки электросистемы за счет “перекачки” избыточной электроэнергии в другие районы, где ее недостает. Восточные регионы производят электроэнергии гораздо больше, чем потребляют сами. В центре же России наблюдается дефицит электроэнергии, который пока не удается покрыть засчет передачи энергии из Сибири на запад. К удобствам ЕЭС можно также отнести и возможность размещения элекростанции вдалеке от потребителя. Транспортировка электроэнергии обходиться во много раз дешевле, чем транспортировка газа, нефти или угля и при этом происходит мгновенно и не требует дополнительных транспортных затрат.
¨ График 2. Нагрузка электросети в течение суток |
Если бы ЕЭС не существовало, то понадобилось бы 15 млн кВт дополнительных мощностей.
Российская энергосистема обоснованно считается одной из самых надежных в мире. За 35 лет эксплуатации системы в России в отличие от США(1965, 1977) и Канады (1989) не произошло ни одного глобального нарушения электроснабжения.
Несмотря на распад Единой Энергосистемы СССР большинство энергосистем ныне независимых республик все еще находятся под оперативным управлением ЦДУ РФ. Большинство независимых государств имеют отрицательное сальдо в торговом балансе электроэнергии с Россией. Так, по данным от 7.12.93 Казахстан должен России около 150 млрд. рублей, а Украина и Белорусия вместе - около 170 млрд., причем ни один должник в настоящее время не имеет финансовых возможностей выплатить России эти суммы.
3. Текущее положение в отрасли.
Энергоемкость ВПП.
Экологические аспекты развития электроэнергетики.
Вследствие спада производства потребности хозяйства страны в электроэнергии снизились и поскольку по прогнозам специалистов такая ситуация будет продолжаться еще как минимум 2-3 года и важно не допустить разрушения системы к моменту, когда потребности в электроэнергии снова станут возрастать. Для поддержания уже существующих электромощностей необходим ввод 8-9 млн кВт ежегодно, однако из-за проблем с финансированием и развалом хозяйственных связей из запланированных на 92ойгод 8 млн кВт построено и пущено мощностей лишь чуть более 1 млн кВт.
В настоящее время сложилась парадоксальная ситуация, когда в условиях спада производства наращивается его энергоемкость. По различным оценкам потенциал энергосбережения в России составляет от 400 до 600 млн. тонн условного топлива. А ведь, что составляет более трети всех потребляемых сегодня энергоресурсов.
¨ График 3. Сравнительная энергоемкость ВПП некоторых стран и регионов. |
Эти резервы распределяются по всем этапам от производства, транспортировки, хранения до потребителя. Так, суммарные потери ТЭК составляют 150-170 млн тонн условного топлива. Очень велико потребление нефтепродуктов низкой перегонки в качестве топлива на электростанциях. При имеющем место дефиците моторного топлива такая политика крайне неоправданна. Принимая во внимание значительную разницу цен между мазутом и моторным топливом в качестве топлива для котлов теплостанций гораздо эффективнее использовать газ или уголь, однако при использовании последнего большое значение приобретают экологические факторы. Очевидно,что эти направления должны развиваться в равной степени, так как экономическая конъюнктура может существенно меняться даже в энергетике и однобокое развитие отрасли никак не может способствовать ее процветанию. Газ гораздо эффективнее использовать в качестве химического топлива(сейчас газа сжигается 50% от всего призводимого в стране), чем сжигать его на ТЭЦ.
Выброс вредных веществ в окружающую среду на единицу продукции превышает аналогичный показатель на западе в 6-10 раз. Экстенсивное развитие производства, ускоренное наращивание огромных мощностей привело к тому, что экологический фактор долгое время учитывался крайне мало или вовсе не учитывался. Наиболее неэкологичны угольные ТЭС, вблизи них радиационный уровень в несколько раз превышает уровень радиации в непосредственной близости от АЭС. Использование газа в ТЭС гораздо эффективнее, чем мазута или угля: при сжигании 1 тонны условного топлива образуется 1.7 тонны СО2 против 2.7 тонны при сжигании мазута или угля. Экологические параметры установленые ранее не обеспечивали полной экологической чистоты,в соответствии с ними строилось большинство электростанций. Новые стандарты экологической чистоты вынесены в специальную государственную программу “Экологически чистая энергетика”. С учетом требований этой программы уже подготовлено несколько проектов и десятки находятся в стадии разработки. Так, существует проект Березовской ГРЭС-2 с блоками по 800 Мвт и рукавными фильтрами улавливания пыли, проект ТЭЦ с парогазовыми установками мощностью по 300 Мвт, проект Ростовской ГРЭС, включающий в себя множество принципиально новых технических решений.
4. Проблемы развития ядерной энергетики.
После катастрофы на Чернобыльской АЭС под влиянием общественности в России были существенно приторможены темпы развития атомной энергетики. Существовавшая ранее программа ускоренного достижения суммарной мощности АЭС в 100 млн кВт (США уже достигли этот показатель) была фактически законсервирована. Огромные прямые убытки повлекло закрытие всех строившихся в России АЭС, станции, признанные зарубежными экспертами как вполне надежные, были заморожены даже в стадии монтажа оборудования. Однако, последнее время положение начинает меняться: в июне 93го года пущен 4ый энергоблок Балаковской АЭС, в ближайшие несколько лет планируется пуск еще нескольких атомных станций и дополнительных энергоблоков принципиально новой конструкции. Известно, что себестоимость атомной энергии значительно превышает себестоимость электроэнергии, полученной на тепловых или гидравлических станциях, однако использование энергии АЭС во многих конкретных случаях не только незаменимо, но и является экономически выгодным - в США АЭС за период с 58го года по настоящий момент АЭС принесли 60 млрд долларов чистой прибыли. Большое преимущество для развития атомной энергетики а России создают недавно принятые российско-американские соглашения о СНВ-1 и СНВ-2, по которым будут высвобождаться огромные количества оружейного плутония, невоенное использование которого возможно лишь на АЭС. Именно благодаря разоружению традиционно считавшаяся дорогой электроэнергия получаемая от АЭС может стать примерно в два раза дешевле электроэнергии ТЭС.