P газ - сила давления газов,
P вр - сила инерции вращательно движущихся масс шатуна,
b - угол отклонения шатуна,
f - угол поворота кривошипа
- 16 -
3.5 ПРИМЕР ОПРЕДЕЛЕНИЯ ТРАЕКТОРИИ ДВИЖЕНИЯ
ЦЕНТРА ПОДШИПНИКА
В данном параграфе приведен такой режим нагружения, при
котором сухое трение не возникает. Вопросы расчета сухого
трения будут рассмотрены в дальнейшем.
3.5.1 На рис. 3.5.1 приведен пример движения центра подшипника
в условиях отсутствия сухого трения. Центр может двигаться в
пределах круга очерченного радиусом радиального зазора (в
качестве примера использован первый цикл расчета). На данном
рисунке представлен расчет на режиме n=2000 об/мин.
На графике четко видна начальная точка расчета. Для этой
точки выбираются произвольные начальные условия. Проще всего
в качестве начальных условий принять стационарное соосное
положение центров:
X=0, Y=0, Vx=0, Vy=0 3.5.1
Далее видно, что примерно через 60 градусов смещение вы-
ходит на квазистационарный режим, т.е. для точного определе-
ния начальных условий достаточно одного цикла расчета.
3.5.2 На рис. 3.5.2 даны развернутые по углу поворота коленча-
того вала диаграммы минимальных зазоров в подшипнике и
максимальных гидродинамических давлений для того же случая
расчета, что и на рис. 3.5.1. Как видно из графика максималь-
ные гидродинамические давления на данном режиме могут пре-
восходить 600 кг/см2.
- 17 -
4. КОНТАКТ ПОВЕРХНОСТЕЙ. СУХОЕ ТРЕНИЕ
4.1 ГЕОМЕТРИЧЕСКИЕ СООТНОШЕНИЯ при контакте
Траектория движения центра подшипника зависит от многих
факторов, и в зависимости от нагрузки могут возникнуть ситу-
ации, когда нарушаются условия гидродинамической смазки,
т.е. возникает непосредственный контакт поверхностей шейки и
подшипника, что приводит к сухому трению.
ПРОВЕРКА НАЛИЧИЯ КОНТАКТА
В прцессе счета постоянно проверяется условие наличия
зазора
Z =sqrt(Xo*Xo + Yo*Yo)/ R, 4.1.1
если Z=1, то это служит признаком контакта,
если Z>1, что может случиться, поскольку проводится числен-
ное интегрирование, то вводится искусственная коректировка
смещений
Xo = Xo/ Z 4.1.2
Yo = Yo/ Z 4.1.3
где: Xo и Yo в левой части обозначены те же смещения, что и в
правой части после их уменьшения в Z раз.
Направление точки контакта определяется соотношением
fконт = arc Tg( Yo / Xo)+180 4.1.4
СКОРОСТЬ СМЕЩЕНИЯ
В условиях сухого трения кинематика взаимного движения
центров шипа и втулки определяется условиями касания двух
окружностей в точке, определенной соотношением 4.1.4.
В момент контакта поверхностей относительная нормальная
скорость поверхностей подшипника обращается в НУЛЬ.
Vn = Vx*cos(f конт) + Vy*sin(f конт) =0 4.1.5
Касательная скорость при этом бутет иметь значение
Vk = Vy*cos(f конт) - Vx*sin(f конт) 4.1.6
Из этих двух уравнений определить новые значения скорос-
тей Vx и Vy в условиях контакта.
Vx = -Vk*sin(f конт) 4.1.7
Vy = Vk*cos(f конт) 4.1.8
4.2 КОНТАКТНЫЕ УСИЛИЯ в точке касания
4.2.1 На рис. 4.2.1 дана схема сил, действующая в условиях
контакта.
Векторами .X и .Y обозначены обычные равнодействующие
внешней нагрузки и внутренних сил, подсчитанных из предполо-
жения, что работает нормальная гидродинамика.
- 18 -
X = Xвнш - Xвну 4.2.1
Y = Yвнш - Yвну 4.2.2
Суммарная сила Р этих двух составляющих разложена по
напралению контакта поверхностей Pn и перпендикулярно к нему
по касательной к точке контакта Pk.
Pn =(X*cos(f конт) + Y*sin(f конт)) 4.2.3
Pk =(Y*cos(f конт) - X*sin(f конт)) 4.2.4
На режиме контакта нормальная составляющая уравновешива-
ется равным по величине и обратным по знаку контактным
усилием, величина которого равна
Pконт= -Pn 4.2.5
Одновременно в точке контакта возникает сила сухого тре-
ния, которая на подвижной детали направлена против движения
и, в принятой системе координат всегда положительна
Рсух = m* Pконт 4.2.6
где: m -коэффициент сухого трения, величина которого задается.
Касательная сила совместно с силой сухого трения опреде-
ляют движение центров на режиме контакта поверхностей
К = Pk + Pсух 4.2.7
Для этого силу "К" разложим по координатным осям
X = -K*sin(f конт) 4.2.8
Y = K*cos(f конт) 4.2.9
Характер изменения контактных усилий на шейку и вкладыш
лучше предствить в форме контактных напряжений ( см. 4.4 ).
4.3 ПРИМЕР РАСЧЕТА СМАЗКИ в условиях нарушения ГИДРОДИНАМИКИ
4.3.1 Пример движения центра вкладыша подшипника при возникно-
вении сухого трения дан на рис. 4.3.1. На этом рисунке при-
веден график движения центра того же подшипника, что и на
рис. 3.5.1, но при 1000 об/мин. Как видно из рисунка в райо-
не сгорания имеется участок сухого трения.
Срвнение графиков на рис. 3.5.1 и 4.3.1 показывает, что
на них есть заметное сходство и существенные различия. Раз-
личие появляется в районе процесса сгорания, где имеет место
наибольшее различие во внешних нагрузках. На этом участке
возникает сухое трение.
4.3.2 На рис. 4.3.2 приведена в развернутом виде полярная ди-
аграмма, данная на на рис. 4.3.1. На графике минимальных за-
зоров в интервале от 370 до 452 градусов угла п.к.в. четко
просматривается участок сухого трения. На этом участке возни-
кают нормальные контактные напряжения и появляется работа
сухого трения, что показано на верхнем графике. На этом гра-
фике видно, каков характер изменений сухого трения.
На нижнем графике дана кривая максимальных гидродинами-
ческих давлений. В районе сгорания возникает наибольшее гид-
родинамическое давление. На данном графике эта величина
достигает Р = 1200 кг/см2.
Затем гидродинамика смазки восстанавливается.
- 19 -
4.4 КОНТАКТНЫЕ НАПРЯЖЕНИЯ.
Естественно, что усилия определенные по условию 4.2.5,
являются причиной износа поверхностей подшипника, но дейст-
вуют они на эти поверхности различно из-за их относительного
перемещения.
Оценка работы поднипников обычно осуществляется по
удельным давлениям в подшипниковой паре. Вычисляется удель-
ное давление по элементпрной формуле:
Pmax
Kmax = --------- 4.4.1
B*D
где: Pmax - максимальная нагрузка,
B и D - диаметр и ширина подшипника.
Между тем для определения удельного давления между дета-
лями с цилиндрическими поверхностями существует формула Гер-
ца, которая для пары вогнутой и выпуклой цилиндрических
поверхностей имеет вид
Pmax * E 1 1
C max = 0.418 * -----------*(--- - ---) 4.4.2
B R1 R2
где: R1 - радиус шейки,
R2 - радиус втулки,
R=R2-R1 - радиальный зазор,
E - приведенный модуль упругости
1 1 1
------ = ------ + -------- 4.4.3
E E1 E2
E1 - модуль упругости материала шейки,
E2 - модуль упругости материала втулки,
Поскольку R<<R1 , то справедливо записать
1 1 R
(--- - ---) = --------
R1 R2 R1**2
таким образом удельные контактные давления будут:
Pmax * E * R
C max = 0.418 * -------------- 4.4.4
B * R1
Эта формула дает способы, с помощью которых можно
снизить контактное давление.
Соотношение удельного давления полученного по формуле
4.4.1 , полученного по формуле Герца 4.4.4 определяется так:
K max 1 P max
------- = -------- * ------------ 4.4.5
C max 2* 0.418 E* B* R
Если сопоставить эти величины для конкретных значений
использованных в примерах, то получим С max/ Р max= 2.37,
откуда видно, что контактные напряжения по Герцу больше мак-
симальных значений, получаемых традиционным расчетом.
4.4.1 На рис. 4.4.1 приведены графики распределения контактных
напряжений по указанным поверхностям. Режим расчета соот-
ветствует рис. 4.3.1. Как видно из графиков, максимумы уси-
лий одинаковы, но по поверхности вкладыша контактные напря-
жения распределены на большем диапозоне углов.
- 20 -
4.5 РАБОТА СУХОГО ТРЕНИЯ
Работа сухого трения может быть определена только чис-
ленным интегрированием
Атр = m*R* f Pконт 4.5.1
где; - шаг интегрирования по углу поворота колен.вала.
Интегрирование может осуществляться за полный цикл, при от-
сутствии контакта автоматически принимается Р конт =0.
Однако, эта общая интегральная оценка явно недостаточна
для всесторонней оценки работы подшипника. Поскольку работа
трения это синоним износа поверхностей подшипника, то боль-
шой интерес представляет распределение работы трения по эле-
ментарным поверхностям обох трущихся поверхностей.
Вычисление работы трения для каждого локального элемента
каждой поверхности не представляет большой трудности. Для
этого интегрирование работы трения необходимо проводить по
формуле 4.5.1 , но каждый раз обращаясь к конкретным контак-
тирующим элементам.
На рис. 4.5.1 приведены графики работы трения и износа
для каждого элемента поверхности шейки и вкладыша.
Кривые 1 и 2 относятся к шатунной шейке. Кривая 1 - это
работа трения распределенная по каждому контактирующему эле-
менту шейки. Интегрально - это общая работа сухого трения в
подшипнике. Кривая 2 представляет износ шатунной шейки в ре-
зультате действия работы трения. Эти кривые эквидистантны.
износ=(коэфф.износа)*(работа трения)
Для получения кривой износа необходимо знать соответс-
твующий коэффициент износа, размерность которого должна быть
износ* ширина шейки микрон * мм
----------------------- ----------
(удельная работа)*время кг*мм/мм2 * сек
В рассматриваемых примерах этот коэффициент выбран ори-
ентировочно.
Кривые 3 и 4 относятся к поверхности вкладыша. Кривая 3
представляет распределение работы, как видно из графика
работа распределяется на большее количество элементов и,
следовательно, износ отдельных элементов будет меньше. Ин-
тегрально эта работа равна работе на шейке. Коэффициент из-
носа на для вкладыша, для примера, выбран на порядок меньше.
- 21 -
5. ДЕФЕКТЫ ПОВЕРХНОСТИ
5.1 ВИДЫ ДЕФЕКТОВ
В работе принято, что все виды дефектов увеличивают за-