Смекни!
smekni.com

Гидродинамический расчет и анализ работы подшипников скольжения автомобильного двигателя (стр. 2 из 6)

плоскостях равнмерно расположенных по образующей для одной

половины подшипника. Из рисунка видно, что наибольшие гидро-

динамические давления возникают в середине подшипника и

уменьшаются по мере приближения к торцам. Естественно на

торцах это избыточное давление не расчитывается, здесь оно

задается как граничное условие.

1.5.2 На рис. 1.5.2 дан пример распределения гидродинамических

давлений по образующей подшипника. Это распределение дано для

одной плоскости - плоскости максимальных давлений. На этом

рисунке точками дана квадратичная аппроксимация точной расче-

тной кривой. Как видно из рисунка квадратичное приближение

явно недостаточно, для того чтобы отказаться от двумерного

уравнения Рейнольдса. При несимметричном подшипнике тем более

необходимо двумерное решение уравнения гидродинамики.

1.5.3 На рис. 1.5.3 дан пример диаграммы распределения гидро-

динамических давлений в полярных координатах. На этом рисун-

ке давление следует брать от "окружности шейки", которая

создана искусственно. В данном случае это 10 кг/см2. Поэтому

шкалы на координатных осях неточно отражают давления. На

"окружности шейки" сделан разрыв для облегчения поиска нача-

ла полярной кривой.

- 7 -

1.6 ВЛИЯНИЕ ОТДЕЛЬНЫХ ФАКТОРОВ

1.6.1 На рис. 1.6.1 приведены графики изменения максимального

давления в зависимости от величины смещения (эксцентрисите-

та). При отсутствии экцентриситета гидродинамическое давле-

ние, естественно, не возникает. По мере увеличения частоты

вращения максимальное давление растет.

Проявление ШЕРОХОВАТОСТИ поверхности видно в диапозоне

зазоров менее критического (0 - 2 микрона). В этом диапозоне

максимальные давления падают.

1.6.2 На рис. 1.6.2 показана зависимость максимального давлен-

ия от скорости смещения центра.

Кривая 1 повторяет аналогичную кривую из рис. 1.6.1 при

неподвижных центрах.

Кривая 2 представляет движение со скоростью 10 мм/сек

перпендикулярно направлению смещения. Как видно из графика

появление даже поперечного движения резко увеличивает давле-

ние масла и, следовательно, несущую способность подшипника.

Кривая 3 представляет движение со скоростью 10 мм/сек в

направлении минимального зазора. Из графика видно, что в

этом случае максимальное давление увеличивается в еще боль-

шей степени. Эта кривая иллюстрирует влияние СВОЙСТВ масла.

Известно, что при превышении некоторого давления жидкости

становятся сжимаемыми. Величина этого критического давления

зависит от свойств жидкости и ее температуры. Эти свойства

задаются вне данного расчета. в приведенном примере величина

критического давления принята 2000 кг/см2 и, как видно из

графика, выше этой величины давление не растет.

1.6.3 Влияние скорости смещения центров на максимальное дав-

ление иллюстрируется графиками на рис. 1.6.3. На этом риунке

приведенй две пары кривых, которые дают возможность сопоста-

вить влияние различных направлений скорости смещения. По оси

абсцисс отложена скорость смещения, которую можно понимать и

как скорость по оси - Х, и как скорость по оси - У. По оси

ординат отложены величина максимальных давлений. Две ордина-

ты отличаются друг от друга на один порядок. Левая ордината

относится к режиму отсутствующего смещения. Правая ордината

относится к смещению, при котором минимальный зазор 8 микрон.

Кривая 1 соответствует режиму: смещение нуль, Vx=0. На

этом режиме движение влево или вправо равноценно. При Vy= 0

получается стационарный соосный режим и несущая способность

равна нулю. Несущая способность увенличивается линейно с

ростом скорости смещения.

Кривая 2 соответствует режиму: смещение нуль, Vy=0. На

этом режиме движение по линии смещения, но поскольку зазор с

обеих сторон одинаков, то ветви кривой должны бы наклады-

ваться на кривую 1. Это имеет место на левой ветви. Правая

ветвь проходит ниже кривой 1. В данном случае сказывается

влияние масляного отверстия. Оно расположено на оси Х в дан-

ном направлении.

- 8 -

Кривая 3 соответствует режиму: минимальный зазор 8 мик-

рон, Vx=0. На этом режиме линейная зависимость несущей спо-

собности от скорости смещения сохраняется, однако минимум

смещается, прчем абсолютная величина минимума больше нуля.

(Масштаб находится справа и на порядок больше.) Ветви кривой

явно несимметричны. Характер кривых показывает линейную за-

висимость несущей способности в интервале между расчетнми

точками. Это свойство дает возможность применять линейную

интерполяцию по скорости смещения при различных исходных

смещениях.

Кривая 4 соответствует режиму: минимальный зазор 8 мик-

рон, Vу=0. Это наиболее сложный случай. Смещение в направле-

нии минимального зазора дает существенное увеличение несущей

способности, причем это увеличение носит ярко выраженный ли-

нейный характер. Скорость смещения в направлении максималь-

ного зазора приводит к снижению несущей способности, однако

на нулевой уровень она не выходит. Линейный характер измене-

ния может быть принят и этом случае.

В итоге из приведенных расчетов можно сделать выводы.

Эффект влияния скорости смещения существенно зависит от

исходной величины минимального зазора и направления смещения

относительно направления минимального зазора.

В интервале между расчетными узлами линейная интерполя-

ция будет давать хорошие результаты.

- 9 -

2. ХАРАКТЕРИСТИКИ ПОДШИПНИКА В ЦЕЛОМ

2.1 КАСАТЕЛЬНЫЕ НАПРЯЖЕНИЯ. СИЛА ТРЕНИЯ

Касательные напряжения в масле, возникающие при враще-

нии, порождают касательные усилия. Преодоление их требует

затрат энергии.

Касательные напряжения жидкостного трения определяются

соотношением

W*R

Ттр= m* --------- 2.1.1

h

где принятые обозначения даны на рис. 1.1.1.

На подвижном элементе это напряжение направлено против

угловой скорости. На неподвижном элементе - по часовой

стрелке.

Кроме этой основной потери энергии, существует еще затра-

та энергии на создание гидродинамического давления , которая

определяется соотношением

h dP

Тги= ----- * ---- 2.1.2

2.*R df

На подвижном кольце величина Тги считается положительной

(суммируются затраты энергии), на неподвижном -отрицатель-

ной. Затраты энергии на создание гидродиннамического давле-

ния при отсутствии эксцентриситета равны нулю, так как dP/df

тождественно равно нулю.

Итак, суммарное касательное напряжение эквивалентное

затрате энергии на обеспечение жидкостной смазки будет

W*R h dP

Т= m*--------- + ----- * ---- 2.1.3

h 2* R df

Суммарное усилие на вязкостное трение в пределах расчет-

ного элемента поверхности получится интегрированием уравне-

ния 2.1.3. В пределах одного элемента поверхности по

окружности подшипника будет

W*R *B h dP

Pкас = f*{m*------- + --- * ---- } 2.1.4

h 2 df

Интеграл от второго слогаемого можно получить только

численным интегрированием, поскольку гидродинамическое дав-

ление определеяется методом численного интегрирования.

Энергия, определяемая первым слагаемым расходуется на

локальный нагрев масла. Однако, наибольний интерес представ-

ляют интегральные характеристики этих потерь.

- 10 -

2.2 НЕСУЩАЯ СПОСОБНОСТЬ ПОДШИПНИКА

Главной общей характеристикой подшипника является его

несущая способность, которая определяется величиной суммар-

ной силы гидродинамического давления, возникающей при враще-

нии.

2.2.1 На рис. 2.2.1 дана схема получения составляющих суммар-

ной силы. Для этого проводится численное интегрирование век-

тора силы гидродинамического давления по поверхности подшип-

ника.

Нормальное усилие по обрзующей равно

Pнор= f*R P*dy 2.2.1

Совместно с касательным усилием - Pкас (2.1.4), возника-

ет суммарное усилие, определяющее несущую способность данно-

го элемента.

Эти два вектора сил могут быть спроектированы на приня-

тое направление осей

Px = Pнор*cos(f) + Pкас*sin(f) 2.2.2

Py = Pкас*cos(f) - Pнор*sin(f) 2.2.3

И, наконец, интегрированием по окружности подшипника по-

лучаем составляющие полной силы реакции масляного слоя.

Px cум = R* Px*df 2.2.5

Py сум = R* Py*df 2.2.6

Абсолютная величина силы НЕСУЩЕЙ СПОСОБНОСТИ будет

Pсум =sqrt{ Px сум**2 + Py сум**2} 2.2.7

Направление этой силы

arcTg( ) = Py сум/Px сум 2.2.8

2.2.2 Изменение несущей способности смазки в зависимости от

величины смещения показано на рис. 2.2.2. На этом графике

дана несущая способность подшипника в стационарном режиме -

отсутствует скорость смещения центров. Из графика видно, что

с уменьшением зазора несущая способность резко возрастает.

Однако, предел этому увеличению определяется разрушеним мас-

ляного слоя, которое происходит под влиянием шероховатости

поверхностей. В данном расчете принято, что суммарная шеро-

ховатость обеих поверхностей равна 2 микронам. В этой точке

начинается потеря несущей способности. Зависимость 1 повторя-

ет кривую максимального давления - кривую 4.

Кривые 2 и 3 представляют составляющие суммарной силы, в

принципе, их изменение повторяет изменение несущей способ-

ности. Кривая 3 показывает, что смещение центра по оси - Х

порождает усилие, направленное по оси - У.

2.2.3 Влияние частоты вращения на несущую способность аналогич-

но влиянию не максимальное давление. Это видно из графиков

рис. 2.2.3. При неподвижном центре несущая способность рас-

тет пропорционально росту частоты вращения.

2.2.4 На величину несущей способности смазки очень большое

влияние оказывает скорость смещения центров. На рис. 2.2.4

показано влияние скорости смещения. Эти зависимости хорошо

повторяют зависимости максимальных давлений (рис. 1.6.3),