Смекни!
smekni.com

Теорія подібностей (стр. 4 из 5)

Положение 1. Создание модели возможно, если критерии подобия (безразмерные комплексы), составленные из величин, характеризующих только ее системные (материальные) параметры, равны соответствующим критериям изучаемой системы-оригинала.

Положение 2. В созданной, согласно положению 1, модели осуществление процессов, подобных оригиналу, возможно, если критерии подобия, содержащие только параметры процессов, входящих в условия однозначности и в том числе начальные условия (параметры исходного режима, возмущений и отклонений), в модели и оригинале соответственно одинаковы.

Положение 3. Осуществление модели согласно формулировкам 1 и 2 возможно в сколь угодно сложных анизотропных, нелинейных или имеющих вероятностно заданные параметры системах при условии одновременного соблюдения соответствующих дополнительных положениях, сформулированных ниже.

Дополнительные положения теории подобия. Эти положения, предложенные авторами, распространяют три основные теоремы подобия на системы сложные, системы с нелинейными или переменными параметрами, анизотропные системы (с различными свойствами по различным координатам) и системы, заданные вероятностно-статистическими характеристиками; этими же положениями охватываются геометрически неподобные системы, а также системы, для которых понятие подобия интерпретируется шире, чем постоянство масштабных коэффициентов в сходственных точках пространства параметров в сходственные моменты времени.

В общем случае дополнительные положения теории подобия формулируются следующим образом:

— подобие сложных геометрически подобных и изотропных систем с детерминированно определенными линейными или постоянными параметрами, образованных несколькими соответственно подобными по отдельности подсистемами, обеспечивается, если выполняется дополнительное условие подобия всех сходственных элементов, являющихся общими для этих подсистем;

— условия подобия сложных геометрически подобных и изотропных систем с детерминированно определенными линейными и постоянными параметрами могут быть распространены на сложные системы с нелинейными или переменными параметрами, заданными детерминированно, если выполняется дополнительное условие совпадения относительных характеристик сходственных параметров, являющихся нелинейными или переменными;

— условия подобия детерминированно определенных геометрически подобных изотропных сложных систем могут быть распространены на анизотропные геометрически подобные сложные системы, заданные детерминированно, если выполняется дополнительное условие обеспечения одинаковой относительной анизотропии в сопоставляемых системах;

— условия подобия детерминированно определенных геометрически подобных анизотропных сложных систем с переменными или нелинейными параметрами могут быть распространены на геометрически неподобные сложные системы с детерминированно определенными параметрами, если выполняется дополнительное условие обеспечения такого нелинейного подобия пространства параметров, при котором существуют подобные изменения параметров процесса в сходственных точках этого пространства;

— условия подобия сложных геометрически неподобных анизотропных систем с детерминированно определенными нелинейными или переменными параметрами могут быть распространены, на системы с вероятностно (статистически) определенными параметрами, если выполняются дополнительные условия совпадения плотностей вероятностей сходственных параметров и пропорциональности их статистических моментов, степени масштабных коэффициентов при которых совпадают с порядками соответствующих моментов.

Моделирование.

Подобие физических процессов и систем широко используется в технике для исследования методом моделирования. В тех случаях когда математическое решение задачи затруднено, а то и попросту невозможно, вполне естественным является обращение к экспериментальному исследованию на моделях с последующим перерасчетом полученных результатов на натуру, которая явилась прототипом модели. При этом модель и натура должны находиться между собой в отношениях подобия.

Исследование на моделях позволяет ускорить или замедлить процессы, которые в натурных условиях развиваются со скоростью, затрудняющих вести наблюдение. При проведении эксперимента непосредственно на натуре почти всегда приходится отказываться от активного поиска оптимальных конструктивных решений, ибо это связано со значительными денежными затратами, а не редко и просто не возможно.

Теория моделирования базируется на принципах, вытекающих из теории подобия. Эти принципы заключаются в соблюдении условий, которые определяют соотношения между параметрами модели и натуры, а так же правила пересчета исследуемых величин с модели на натуру и обратно. Однако, известно, что ни одна модель не может с абсолютной полнотой воспроизвести изучаемый оригинал – для этого должно быть полное их тождество. Поэтому при моделировании стараются соблюсти в модели по крайней мере те характеристики натуры, которые являются наиболее существенными в общей картине физического процесса, обеспечивая заданную точность результатов (например при расчете стержневых конструкций пренебрегают собственным весом, а при проектировании плотины насыпи рассматривают как распределенную нагрузку).

Методы подобия в механике.

Движение математического маятника

В качестве первого примера мы рассмотрим классический пример о движении математического маятника.

Математический маятник (рис. 1) представляет собой тяжелую материальную точку, подвешенную на невесомой и нерастяжимой нити, которая закреплена другим своим концом неподвижно. Совокупность возможных движений мы ограничим условием, что движения маятника плоские.

Рис. 1. Математический маятник.

Введем обозначения: l — длина маятника, φ — угол между нитью и вертикалью, t — время, m — масса груза и N — натяжение нити. Если пренебречь силами сопротивления, то задача о движении маятника приводится к решению уравнений

, (1)

(2)

с начальным условием

при t=0 φ=φ0 и

,

т. е. за начальный момент времени принят тот момент, когда маятник отклонен на угол φ0, а скорость равна нулю.

Из уравнений (1), (2) и начального условия очевидно, что в качестве определяющих параметров можно взять следующую систему:

t, l, g, m, φ0.

Числовые значения всех остальных величин определяются полностью значениями этих параметров. Следовательно, мы можем написать

φ = φ (t, φ0, l, g, m), N=mgf(t, φ0, l, g, m) (3)

где φ и f – безразмерные величины.

Числовые значения функций φ и f не должны зависеть от системы единиц измерения. Вид этих функций можно определить либо решая уравнения (1) и (2), либо экспериментальным способом.

Из общих соображений, изложенных выше, вытекает, что пять аргументов функций φ и f можно свести только к двум аргументам, которые представляют собой безразмерные комбинации, составленные из t, l, g, m и φ0, так как имеются три независимые единицы измерения.

Из величин t, l, g, m и φ0 можно составить две независимые безразмерные комбинации

φ0 и

(4)

Все другие безразмерные комбинации, составленные из t, l, g, m и φ0 или вообще из любых величин, определяемых этими параметрами, будут функциями комбинаций (4). Следовательно, можно написать

, (5')

. (5")

Формулы (5), полученные с помощью метода размерности, показывают, что закон движения не зависит от массы груза, а натяжение нити прямо пропорционально массе груза. Эти выводы вытекают также непосредственно из уравнений (1) и (2). Величину

можно рассматривать как время, выраженное в специальной системе единиц измерения, в которой длина маятника и ускорение силы тяжести приняты равными единице.

Обозначим через Г какой-нибудь характерный промежуток времени, например время движения маятника между крайним и вертикальным положениями или между двумя одинаковыми фазами, т. е. период колебания, и т. д. (существование периодического движения можно принять как гипотезу или как результат, известный из дополнительных данных). Имеем

функция f2 представляет собой безразмерную величину, а так как из l, g и m нельзя составить безразмерную комбинацию, то очевидно, что функция f2 не зависит от l, g и m. Следовательно,

(6)

Формула (6) устанавливает зависимость времени Г от длины маятника. Получить вид функции f2(φ0) с помощью теории размерности нельзя. Определение f2(φ0) необходимо произвести либо теоретически, на основании уравнения (1), либо экспериментально.

Формулу (6) можно получить непосредственно из соотношений (5'). В самом деле, для периода колебаний соотношение (5') дает

.

Решая это уравнение, получим формулу (6).

Если Г есть период колебания, то из соображений симметрии очевидно, что период Г не зависит от знака φ0, т. е.