При двухконтурной схеме вода является теплоносителем и замедлителем нейтронов. Реакторы, созданные для работы в таких условиях принято называть водно-водяными энергетическими реакторами (ВВЭР).
Реакторы канального типа, в которых теплоносителем является вода, а замедлителем графит, применяются на крупных блоках с турбинами насыщенного пара. Эти реакторы принято называть реакторами большой мощности канального типа (РБМК).
Основные технико-экономические характеристики блоков АЭС с реакторами типа ВВЭР и РБМК.
Таблица 2.
Показатель | ВВЭР - 440 | ВВЭР - 1000 | РБМК - 1000 |
Мощность блока, МВт | 440 | 1000 | 1000 |
Мощность турбогенератора, МВт | 220 | 500 | 500 |
Число турбин в блоке, шт | 2 | 2 | 2 |
Давление пара перед турбиной, Мпа | 4,32 | 5,88 | 6,46 |
КПД (нетто), % | 29,7 | 31,7 | 31,3 |
Основные технические характеристики АЭС с реакторами типов ВВЭР и РБМК в табл. 2 [4]. Стоимость 1 кВт установленной мощности на АЭС с блоками 440 и 1000 Мвт в 1,5 – 1,6 раза выше, чем на электростанциях, работающих на органическом топливе, равной мощности, построенных в те же годы [5]. Можно полагать, что в ближайшие годы соотношение в стоимостях 1 кВт установленной мощности ТЭС и АЭС будет иметь тенденцию к увеличению, так как для обеспечения большей надежности электростанции и уменьшения влияния на окружающую среду строительство АЭС потребует больших дополнительных капиталовложений, чем строительство ТЭС. Однако себестоимость электроэнергии на таких АЭС ниже, чем на ТКЭС (тепловых конденсационных электрических станциях), предназначенных только для производства электроэнергии, кроме того спорной можно считать саму методику определения капитальных вложений в АЭС, о чем подробнее речь пойдет ниже в разделе 2.2.
1.3 Перспективы развития ядерной и термоядерной энергетики
Как было показано выше, тип реактора является определяющим для любой ядерной энергетической установки. Исходя из перспектив глобального преобразования мировой энергетики, наиболее перспективными можно считать [6], пожалуй, пять основных известных в настоящее время науке типов реакторов:
Высокотемпературный энергетический ядерный реактор на газообразном топливе (ГФЯР), являющийся реактором на тепловых нейтронах, в котором делящееся вещество (235U, 233U) в составе газообразного гексафторида урана или в виде испаренного металлического урана расположено в центральной зоне полости (цилиндрической или сферической), образованной твердым замедлителем-отражателем нейтронов (Be, BeO, C или их комбинацией). Перспективность ГФЯР связана со следующим:
возможность получения большой мощности;
коэффициент воспроизводства, превышающий единицу;
высокая температура нагрева рабочей среды (более 10000 К);
малая критическая масса (десятки килограмм делящегося вещества);
возможность циркуляции делящегося вещества и его очистка в системе циркуляции.
Из этого следует:
высокая эффективность использования горючего;
минимальные затраты на топливный цикл;
повышенная безопасность;
высокая экономичность;
широкий диапазон использования.
Вихревые ядерные реакторы на тепловых и быстрых нейтронах.
Вихревой реактор состоит из вихревой камеры, внутри которой, благодаря вихревому движению введенного тангенциально теплоносителя образуется устойчивый центробежный кипящий слой мелкодисперсного твердого и жидкого ядерного топлива. Благодаря целому ряду положительных свойств этого слоя энергетический вихревой ядерный реактор обладает некоторыми преимуществами по сравнению с реакторами с фиксированными активными зонами. С помощью этого типа реакторов с высоким коэффициентом воспроизводства на быстрых нейтронах можно коренным образом изменить структуру топливного баланса и создать возможность практически неограниченного развития ядерной энергетики, поскольку преодолевается кризис ресурсов природного урана в будущем.
3. Электроядерный бридинг.
Сущность заключается в использовании мощного пучка заряженных частиц (протонов) высокой энергии, получаемого с помощью ускорителя, для бомбардировки мишеней (из бериллия, тория, урана). В результате возникают мощные источники нейтронов, которые можно использовать для переработки уранового и ториевого сырья в делящиеся материалы, то есть для производства ядерного топлива.
4. Пароводяной реактор-размножитель на быстрых нейтронах (БПВР).
Реактор аналогичен ВВЭР.
5. Энергетический термоядерный реактор (ТОКОМАК).
Существует пока в виде исследовательской установки, на которой отрабатываются лишь основные принципы термоядерного синтеза. Практическая реализация управляемой термоядерной реакции сопряжена в настоящее время с рядом физических и технических трудностей.
Основная трудность физического характера сопряжена с неустойчивостью плазмы, помещенной в магнитную ловушку.
Трудности технического характера: наличие примесей с большими порядковыми номерами приводят к возрастанию энергетических потерь из плазмы.
Решение этих проблем требует прохождения следующих этапов:
научная демонстрация возможности осуществления термоядерного синтеза, при котором отношение выходной энергии реакции синтеза к энергии, затраченной на создание, нагрев и удержание плазмы, по крайней мере, равно единице;
демонстрация технической осуществимости термоядерного реактора;
создание демонстрационной термоядерной электростанции.
II. Будущее ядерной энергетики в Республике Беларусь.
2.1. Целесообразность развития ядерной энергетики.
Решение о создании АЭС зависит от многих факторов, среди которых стоимость производства электроэнергии от АЭС по сравнению с другими методами, мощность энергосистемы, технологические и экономические возможности для осуществления ядерной программы, степень зависимости от дефицитных или импортируемых видов топлива. Но основным фактором, определяющим для Беларуси будущее ядерной энергетики после чернобыльской аварии, является широкое общественное мнение. После аварий на АЭС «Три-Майл-Айленд» и Чернобыльской АЭС в Беларуси появилось настороженное и скептическое отношение общественности к перспективности ядерной энергетики. Стало очевидным, что безопасность выходит за границы безопасного развития ядерной энергетики.
Тем не менее, исходя из объективных факторов, можно утверждать, что в условиях острейшего дефицита органических энергоносителей в Беларуси, ядерная энергетика может рассматриваться в качестве реальной альтернативы. Несмотря на привлекательность, широко пропагандируемой идеи использования экологически чистых энергоносителей (солнце, ветер, геотермальные воды и т. п.), в будущем они не могут серьезно повлиять на структуру энергобаланса республики. К тому же эти источники энергии вовсе не безопасны для человека. Согласно оценкам [5], вероятность гибели людей при производстве электричества от АЭС в 25 раз ниже, чем на ветровых, и в 10 раз ниже, чем на гелеоустановках.
Существенно также влияние экономических возможностей Беларуси и необходимости импортирования ею ядерного топлива. Хотя в республике имеется опыт создания и успешной эксплуатации для исследовательских целей действующего ядерного реактора (Институт проблем энергетики НАНБ, п. Сосны), однако после событий последовавших после чернобыльской аварии все работы в этом направлении были приостановлены, а реактор был демонтирован. Таким образом, реальная перспектива развития ядерной энергетики в Беларуси, по крайней мере, в технологическом и экономическом аспекте, может рассматриваться только в неразрывной связи с предстоящим экономическим этапом объединения Беларуси и России. С учетом этого важно учитывать тенденции, наметившиеся в ядерной энергетике России и других ядерных стран. Так в выступлении президента России на саммите тысячелетия были предложены инициативы по совершенствованию ядерной энергетики [7,8] с проведением работ в рамках международной программы [9,10]. В частности предлагается «… исключение из использования в мирной ядерной энергетике обогащенного урана и плутония» в «… интересах кардинального повышения эффективности нераспространения ядерного оружия» [7,8]. По оценкам специалистов [10] в этом контексте подразумевается не вообще обогащенный уран или плутоний, а высокообогащенный уран с содержанием 235U 20-90% и материал, например, природный или обогащенный уран с высоким (выше 20%) содержанием плутония, то есть материалы, пригодные для использования в качестве ядерных боеприпасов. В выступлении также прозвучал тезис об «окончательном решении проблемы радиоактивных отходов» [7]. Это означает, что в перспективной крупномасштабной ядерной энергетике (такой, как, например, в рамках предстоящего экономического объединения ряда стран СНГ, включая союз России и Белоруссии) необходимо модифицировать добычу урана, ввести трансмутационный замкнутый топливный цикл и улучшить упаковку наиболее опасных нуклидов из числа отходов перед их окончательным захоронением.
Концепция вводит в ядерную энергетику:
более высокий уровень безопасности (исключение аварий, требующих эвакуации населения);
новую технологию обращения с ядерными и радиоактивными материалами для решения проблем экологии (достижения радиационной эквивалентности отходов и сырьевых материалов);
техническое решение нераспространения делящихся материалов (исключение - выделение в чистом виде плутония, 233, 235U);