Смекни!
smekni.com

В 1827 г. Фридрих Вёлер получил алюминий иначе, вытеснив его из того же хлорида металлическим калием. Первый промышленный способ получения алюминия, как уже упоминалось, был разработан лишь в 1855 г., а технически важным металлом алюминий стал лишь на рубеже XIX...XX вв. Почему?

Самоочевидно, что далеко не всякое природное соединение алюминия можно рассматривать как алюминиевую руду. В середине и даже в конце XIX в. в русской химической литературе алюминий часто называли глинием, его окись до сих пор называют глиноземом. В этих терминах – прямое указание на присутствие элемента №13 в повсеместно распространенной глине. Но глина – достаточно сложный конгломерат трех окислен – глинозема, кремнезема и воды (плюс разные добавки); выделить из нее глинозем можно, но сделать это намного труднее, чем получить ту же окись алюминия из достаточно распространенной, обычно красно-бурого цвета горной породы, получившей свое название в честь местности Ле-Бо на юге Франции.

Эта порода – боксит содержит от 28 до 60% Al2О3. Главное ее достоинство в том, что глинозема в ней по меньшей мере вдвое больше, чем кремнезема. А кремнезем – самая вредная в этом случае примесь, от нее избавиться труднее всего. Кроме этих окислов, боксит всегда содержит окись железа Fe2О3, бывают в нем также окислы титана, фосфора, марганца, кальция и магния.

В годы второй мировой войны, когда многим воюющим странам не хватало алюминия, полученного из боксита, использовали по необходимости и другие виды сырья: Италия получала алюминий из лавы Везувия, США и Германия – из каолиновых глин, Япония – из глинистых сланцев и алунита. Но обходился этот алюминий в среднем впятеро дороже алюминия из боксита, и после войны, когда были обнаружены колоссальные запасы этой породы в Африке, Южной Америке, а позже и в Австралии, алюминиевая промышленность всего мира вернулась к традиционному бокситовому сырью.

В Советском Союзе существуют опробованные в заводских масштабах способы производства алюминия на основе нефелиносиенитовых и нефелиноапатитовых пород. В Азербайджанской ССР давно начато промышленное освоение алунита как комплексного, в том числе и алюминиевого, сырья. Но и лучшим алюминиевым сырьем – бокситом природа нас не обделила. У нас есть Северо-Уральский и Тургайский (расположенный в Казахстане) бокситоносные районы: есть бокситы в Западной и Восточной Сибири, на северо-западе европейской части страны. На базе Тихвинского бокситового месторождения и энергии Волховской ГЭС начинал в 1932 г. свою работу первенец отечественной алюминиевой промышленности Волховский алюминиевый завод. Дешевая электроэнергия огромных сибирских ГЭС и ГРЭС стала важным «компонентом» развивающейся высокими темпами алюминиевой промышленности Сибири.

Разговор об энергии мы повели не случайно. Алюминиевое производство энергоемко. Чистая окись алюминия плавится при температуре 2050°C и не растворяется в воде, а чтобы получить алюминий, ее надо подвергнуть электролизу. Необходимо было найти способ как-то снизить температуру плавления глинозема хотя бы до 1000°C; только при этом условии алюминий мог стать технически важным металлом. Эту задачу блестяще разрешил молодой американский ученый Чарльз Мартин Холл и почти одновременно с ним француз Поль Эру. Они выяснили, что глинозем хорошо растворяется в криолите 3NaF · AlF3. Этот раствор и подвергают электролизу на нынешних алюминиевых заводах при температуре 950°C.

Аппарат для электролиза представляет собой железную ванну, футерованную огнеупорным кирпичом с угольными блоками, которые выполняют роль катодов. На них выделяется расплавленный алюминий, а на анодах – кислород, реагирующий с материалом анодов (обычно – углем). Ванны работают под невысоким напряжением – 4,0...4,5 В, но при большой силе тока – до 150 тыс. А.

По американским данным, за последние три десятилетия потребление энергии при выплавке алюминия сократилось на одну треть, но все равно это производство остается достаточно энергоемким.

Каков он есть

Из электролитических ванн алюминий обычно извлекают с помощью вакуум-ковша, и после продувки хлором (для удаления в основном неметаллических примесей) разливают в формы. В последние годы алюминиевые слитки все чаще отливают непрерывным методом. Получается технически чистый алюминий, в котором основного металла 99,7% (главные примеси: натрий, железо, кремний, водород). Именно этот алюминий идет в большинство производств. Если же нужен более чистый металл, алюминий рафинируют тем или иным способом. Электролитическое рафинирование с помощью органических электролитов позволяет получать алюминий чистотой 99,999%. Еще более чистый алюминий для нужд промышленности полупроводников получают зонной плавкой или дистилляцией через субфторид.

Последнее, видимо, нуждается в пояснении. Алюминий, который надо очистить, нагревают в вакууме до 1000°C в присутствии АlF3. Эта соль возгоняется без плавления. Взаимодействие алюминия с фтористым алюминием приводит к образованию субфторида AlF, нестойкого вещества, в котором алюминий формально одновалентен. При температуре ниже 800°C субфторид распадается снова на фторид и чистый алюминий, подчеркиваем, чистый, ибо примеси в результате этой пертурбации переходят в состав фторида.

Повышение чистоты металла сказывается на его свойствах. Чем чище алюминий, тем он легче, хотя и не намного, тем выше его теплопроводность и электропроводность, отражательная способность, пластичность. Особенно заметен рост химической стойкости. Последнее объясняют большей сплошностью защитной окисной пленки, которой на воздухе покрывается и сверхчистый, и обычный технический алюминий.

Впрочем, все перечисленные достоинства сверхчистого алюминия в той или иной степени свойственны и обычному алюминию. Алюминий легок – это все знают, его плотность 2,7 г/см3 – почти в 3 раза меньше, чем у стали, и в 3,3 раза меньше, чем у меди. А электропроводность алюминия лишь на одну треть уступает электропроводности меди. Эти обстоятельства и тот факт, что алюминий стал значительно дешевле меди (в наши дни – примерно в 2,5 раза), послужили причиной массового использования алюминия в проводах и вообще в электротехнике.

Высокая теплопроводность в сочетании с более чем удовлетворительной химической стойкостью сделали алюминий перспективным материалом для теплообменников и других аппаратов химической промышленности, домашних холодильников, радиаторов автомобилей и тракторов. Высокая отражательная способность алюминия оказалась очень кстати при изготовлении на его основе мощных рефлекторов, больших телевизионных экранов, зеркал. Малый захват нейтронов сделал алюминий одним из важнейших металлов атомной техники.

Все эти многочисленные достоинства алюминия становятся еще более весомыми оттого, что этот металл в высшей степени технологичен. Он прекрасно обрабатывается давлением – прокаткой, прессованием, штамповкой, ковкой. В основе этого полезного свойства – кристаллическая структура алюминия. Его кристаллическая решетка составлена из кубов с центрированными гранями; расстояние между параллельными плоскостями 4,04 Ǻ. Металлы, построенные таким образом, обычно хорошо воспринимают пластическую деформацию. Алюминий не стал исключением.

Но при этом алюминий малопрочен. Предел прочности чистого алюминия – всего 6...8 кг/мм3, и если бы не его способность образовывать намного более прочные сплавы, вряд ли стал бы алюминий одним из важнейших металлов XX в.

О пользе старения и фазах-упрочнителях

«Алюминий весьма легко дает сплавы с различными металлами. Из них имеет техническое применение только сплав с медью. Его называют алюминиевою бронзою...»

Эти слова из менделеевских «Основ химии» отражают реальное положение вещей, существовавшее в первые годы нашего века. Именно тогда вышло последнее прижизненное издание знаменитой книги с последними коррективами автора. Действительно, из первых сплавов алюминия (самым первым из них был сплав с кремнием, полученный еще в 50-х годах прошлого века) практическое применение нашел лишь сплав, упомянутый Менделеевым. Впрочем, алюминия в нем было всего 11%, а делали из этого сплава в основном ложки и вилки. Очень немного алюминиевой бронзы шло в часовую промышленность.

Между тем в начале XX в. были получены первые сплавы семейства дюралюмина. Эти сплавы на алюминиевой основе с добавками меди и магния получал и исследовал в 1903...1911 гг. известный немецкий ученый А. Вильм. Он и открыл характерное для этих сплавов явление естественного старения, приводящее к резкому улучшению их прочностных свойств.

У дюралюмина после закалки – резкого охлаждения от 500°C до комнатной температуры и вылеживания при этой температуре в течение 4...5 суток – многократно увеличиваются прочность и твердость. Способность к деформации при этом не снижается, а величина предела прочности вырастает с 6...8 до 36...38 кг/мм2. Это открытие имело величайшее значение для развития алюминиевой промышленности.

И тотчас же начались дискуссии о механизме естественного старения сплавов, о том, почему происходит упрочнение. Было высказано предположение, что в процессе вылеживания закаленного дюралюмнна из матрицы – пересыщенного раствора меди в алюминии – выделяются мельчайшие кристаллики состава CuAl2 и эта упрочняющая фаза приводит к росту прочности и твердости сплава в целом.

Это объяснение казалось вполне удовлетворительным, но после его появления страсти разгорелись еще пуще, потому что в оптический микроскоп никому не удалось рассмотреть частицы состава CuAl2 на отшлифованных пластинках дюралюмина. И реальность их существования в естественно состаренном сплаве стали подвергать сомнению. Оно было тем обоснованнее, что выделение меди из матрицы должно было снижать ее электросопротивление, а между тем при естественном старении дюралюмина оно росло, и это прямо указывало, что медь остается в твердом растворе.