Смекни!
smekni.com

Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности (стр. 6 из 6)

Вид материала линзы определяет интервал измеряемых температур и градуировочную характеристику. Стекло из флюорита обеспечивает возможность измерения низких температур начиная с 100 0С, кварцевое стекло используется для температуры 400¸1500 0С, а оптическое стекло для температур 950 0С и выше.

ПСИ измеряют температуру от 100 до 3500 0С. Основная допустимая погрешность технических промышленных пирометров возрастает с увеличением верхнего предела измерения и для температур 1000, 2000 и
3000 0С составляет соответственно ±12; ±20 и ±35 0С.


2. Расчетное задание

2.1. Расчет измерительной схемы автоматического уравновешенного моста

Заданы:

градуировка термометра сопротивления 23;

значения начальной

и конечной
показаний температур прибора;

;
;

;
;

Наибольшую чувствительность обеспечивает попарно равноплечий мост у которого R2=R3и R1»Rт, причем сопротивления R2и R3задаются в пределах 100-400 Ом. Наиболее часто принимают значение 300 Ом.

;

Эквивалентное сопротивление Rэ реохорда с шунтирующим сопротивлением Rш принимают равным 90 Ом. Сопротивление резистора Rн принимают обычно равным 4.5 Ом.

;
;
;

Сопротивление плеча моста R1определяют по формуле:

;

где

;

Из условия равновесия измерительной схемы моста соответственно для левого и правого крайних положений движка:

;

;

Решая данную систему относительно Rпполучим:

;

Величину сопротивления резистора Rк, определяющего верхний предел измерений, определяют по формуле:

;

Максимальное значение тока Imax, протекающего через ТС, принимается равным 0.007 А. Величину балластного сопротивления рассчитывают по формуле:

;

где U – напряжение питания измерительной схемы моста, равное 6.3 В.

2.2. Расчет сопротивлений измерительной схемы автоматического потенциометра

Заданы:

шкала прибора 0¸1300 0С;

градуировка термоэлектрического термометра ТПП;

расчетная температура свободных концов термометра

;

возможная температура свободных концов термометра

;

начальное значение шкалы

;

конечное значение шкалы

;

диапазон измерений

;

нормированное номинальное сопротивление реохорда

;

нерабочие участки реохорда

;

нормированное номинальное падение напряжения на резисторе Rк

;

выходное напряжение ИПС

;

номинальная сила тока в цепи ИПС

;

сопротивление нагрузки ИПС

;

номинальная сила тока в верхней ветви измерительной схемы прибора

;

номинальная сила тока в нижней ветви измерительной схемы прибора

;

температурный коэффициент электрического сопротивления меди

;

Определяем

по формуле:

;

Определяем приведенное сопротивление реохорда:

;

проверяем правильность определения Rпр:

;

Определяем величину резистора Rк и величину балластного сопротивления Rб:

;

;

Определяем значение сопротивления медного резистора Rм:

;

;

;

;
;
;

Изменение показаний потенциометра для конечного значения шкалы при изменении температуры свободных концов термоэлектрического термометра от

до
составит:

.

Вывод

Практический опыт построения систем регулирования промышленных объектов показывает, что главное значение здесь приобретает не задача выбора алгоритмов функционирования регуляторов, а задачи построения оптимальной схемы получения регулятором текущей информации о состоянии объекта регулирования, которое отражает характер взаимодействий между двумя функциональными основными элементами системы регулирования - объектом и регулятором. Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования. Температура является одним из основных параметров, подлежащих контролю со стороны систем автоматического управления металлургическими процессами. В условиях агрессивных сред и высоких температур, наиболее подходящими для использования являются фотоэлектрические пирометры. Они позволяют контролировать температуру от 100 до 6000 0С и выше. Одним из главных достоинств данных устройств является отсутствие влияния температурного поля нагретого тела на измеритель, так как в процессе измерения они не вступают в непосредственный контакт друг с другом. Так же фотоэлектрические пирометры обеспечивают непрерывное автоматическое измерение и регистрацию температуры, что позволяет использовать их в системах автоматического управления процессами без дополнительных затрат на приобретение и обслуживание устройств сопряжения.

Список литературы

Преображенский В. П. Теплотехнические измерения и приборы. М.: Энергия, 1978, - 704 с.

Чистяков С. Ф., Радун Д. В. Теплотехнические измерения и приборы. М.: Высшая школа, 1972, - 392 с.