Z3 = 101 / (4,2 + 1) = 19 ; Z3 = 19 16
Определяем число зубьев колеса по формуле 2.2.1.12.:
Z4 = 101 - 19 = 82
Определяем диаметры делительных окружностей зубчатых колес.
Диаметр шестерни определяем по формуле 2.2.1.13.:
d3 = (4,5 * 19) / 1 = 85,5 мм
Диаметр колеса определяем по формуле 2.2.1.14.:
d4 = (4,5 * 82) / 1 = 369 мм
Определяем диаметры окружностей вершин зубьев по формулам 2.2.1.15:
dа3 = 85,5 + 2 * 4,5 = 94,5 мм
dа4 = 369 + 2 * 4,5 = 378 мм
Определяем диаметры окружностей впадин зубьев по формулам 2.2.1.16:
df3 = 85,5 - 2,5 * 4,5 = 74,25 мм
df4 = 369 - 2,5 * 4,5 = 357,75 мм
Определяем коэффициент, учитывающий влияние суммарной длины контактной линии по формуле /8/:
Z = (4 - Е) / 3 , (2.2.2.1.)
где Е - коэффициент торцевого перекрытия, определяется по формуле 2.2.1.18.:
Е = [1,88 - 3,2 * (1 / 19 +1 / 82)] * 1 = 1,67
Z = (4 - 1,67) / 3 =0,88
Окружная сила в зацеплении определяется по формуле:
Ft = (2 * T3) / d3 (2.2.2.2.)
Ft = (2 * 795) / 0,0855 = 18596,5 Н
ZH = 1,77 * cos = 1,77 * 1 = 1,77
Определяем значение контактных напряжений по формуле 2.2.1.17.:
Для определения твердости рабочих поверхностей зубьев принимаем н = [н].
Допускаемые контактные напряжения при н = 600...1000 МПа определяются по формуле /8/:
[н] = (17 * HRC + 200) / 1,2 * KHL (2.2.2.3.)
Из формулы 2.2.2.3. твердость поверхности зубьев:
HRC = (1,1 * [н] - 200) / 17 = (1,1 * 850 - 200) / 17 = 43,2
По табл. 2.2. /6/ выбираем для изготовления колес сталь 40Х, термообработка - закалка Т.В.Ч. сквозная, твердость зубьев 45...55 HRC.
Выполняем проверочный расчет передачи по напряжениям изгиба по формуле 2.2.1.21.:
F = YF * Y * Y * (Ft * KF) / (bw * mn) [F]
Коэффициент, учитывающий влияние угла наклона зубьев (Y) определяем по формуле 2.2.1.24:
Y =1
Число зубьев эквивалентного колеса определяем по формуле 2.2.1.23.; cos = 1, т.к. передача прямозубая:
для шестерни ZV3 = 19 / 1 = 19 YF3 = 4,07 (по рис. 2.23. /6/)
для колеса ZV4 = 82 / 1 = 82 YF4 = 3,6 (по рис. 2.23. /6/)
Коэффициент, учитывающий перекрытие зубьев определяем по формуле 2.2.1.25.:
Y = 1 / 1,67 = 0,6
Значение коэффициента нагрузки КF = 1,3...1,5; КF = 1,3.
По табл. 2.2. /6/ для стали 40Х подвергаемой закалке определяем предел выносливости для шестерни и колеса [F0] = 550 МПа, коэффициент запаса прочности SF = 1,7.
Определяем допускаемые напряжения изгиба по формуле 2.2.1.22.:
[F3] = [F4] = (550 / 1,7) * 1 = 323,5 МПа
Напряжение изгиба для шестерни:
F3 = 4,07 * 1 * 0,6 * (18596,5 * 1,3)/(80 * 4,5) = 164 МПа 323,5 МПа
Напряжение изгиба для колеса по формуле 2.2.1. 26:
F4 = 164 * (3,6 / 4,07) = 145 МПа 323,5 МПа
Условие прочности на изгиб выполняется.
Определяем силы в зацеплении:
Ft3 = - Ft4 = (2 * T3) / d3 = (2 * T4) / d4 (2.2.2.4.)
FR3 = - FR3 = Ft * (tg / cos) (2.2.2.5.)
Ft3 = - Ft4 = (2 * 795) / 85,5 = 18596,5 Н
FR3 = - FR4 = 18596,5 * (0,364 / 1) = 6769 Н
Fа1 = - Fа2 = 3842 * 0,197 = 756,9 Н
2.3. Расчет дополнительной открытой зубчатой передачи.
uз.п. = 2,26 - передаточное число дополнительной открытой зубчатой передачи.
1) Назначаем материал: для шестерни выбираем сталь марки 45Л (нормализация, НВ1 = 153...179, НВ1 ср = 166), для колеса - сталь марки 25Л ( нормализация, НВ2 = 124...151, НВ2 ср = 137,5).
2) Определяем модуль зацепления из условия прочности зубьев на изгиб по формуле /4/:
где Мш. экв. - эквивалентный вращающий момент на валу шестерни, Н*м;
Z1 - число зубьев шестерни, принимаем Z1 = 17;
bd - коэффициент ширины колеса, принимают bd = 0,4...0,6, при консольном расположении шестерни относительно опор и твердости зубьев колеса НВ2 < 350;
КF - коэффициент, учитывающий распределение нагрузки по ширине венца, принимают КF = 1,25...1,35;
YF - коэффициент формы зуба, принимаем YF = 4,26 по таблице в /4/.
Мш. экв. = Мк. экв. / (uз.п. * з.п.),
где Мк. экв. - эквивалентный вращающий момент на валу колеса;
uз.п. - передаточное число открытой зубчатой передачи;
з.п. - КПД открытой зубчатой передачи (з.п. = 0,95).
Мш. экв. = 7983,7 / (2,26 * 0,95) = 3718,5 Н*м
[F] - допускаемое напряжение на изгиб, МПа.
[F] = (F limb * KFL * KFC) / SF ,
где F limb - предел выносливости зубьев при изгибе, соответствующий базовому числу циклов напряжения, МПа. Для выбранной марки стали F limb = 1,8 * НВ (расчет ведут по средней твердости).
Средняя твердость НВ = (НВ1 +НВ2) / 2 = (166 + 137,5) / 2 = 151,75
F limb = 1,8 * 151,75 = 273,15
SF - коэффициент безопасности, принимают SF = 1,75...2,30; принимаем SF = 2;
КFL - коэффициент долговечности, принимают КFL = 1;
КFC - коэффициент, учитывающий влияние двухстороннего приложения нагрузки, для нереверсивных передач КFC = 1.
[F] = (273,75 * 1 * 1) / 2 = 136,9 МПа
По СТ СЭВ 310-76 полученное значение модуля зацепления округляем до ближайшего стандартного значения по табл. 8. /4/; m = 14 мм.
3) Расчет геометрических размеров шестерни и колеса:
делительные размеры:
d1 = m * z1 ; d2 = m * z2 = m * z2 * uз.п. (2.3.4.)
d1 = 14 * 17 = 238 мм
d2 = 14 * 17 * 2,26 = 538 мм
диаметры вершин зубьев /4/:
dа1 = d1 + 2 * m; dа2 = d2 + 2 * m (2.3.5.)
dа1 = 238 + 2 * 14 = 266 мм
dа2 = 538 + 2 * 14 = 566 мм
диаметры впадин зубьев /4/:
df1 = d1 - 2,5 * m; df2 = d2 - 2,5 * m (2.3.6.)
df1 = 238 - 2,5 * 14 = 203 мм
df2 = 538 - 2,5 * 14 = 503 мм
ширина венца колеса и шестерни /4/:
b2 = bd * d1 ; b1 = b2 + (2...5) мм (2.3.7.)
b2 = 0,5 * 238 = 119 мм
b1 = 119 + 3 = 122 мм
межосевое расстояние определяется по формуле /4/:
aw = 0,5 * (d1 + d2) (2.3.8.)
aw = 0,5 * (238 + 538) = 388 мм
4) Окружная скорость определяется по формуле /4/:
v = ( * d1 * nш) / (60 * 1000), (2.3.9.)
где nш - частота вращения шестерни, об/мин (nш = nдв = 670 об/мин).
v = (3,14 * 238 * 670) / (60 * 1000) = 8,3 м/с
Назначаем 8-ю степень точности изготовления.
5) Проверочный расчет на изгибную прочность из основания зубьев шестерни выполняем по условию /4/:
где KFV - коэффициент, учитывающий динамическую нагрузку; по табл.2.7. /7/ KFV = 1,78 при v = 8 м/с и НВ 350.
6) Определяем внутренние диаметры ступиц:
для шестерни:
где [кр] = 15...20 МПа - допускаемое напряжение кручения.
для колеса:
Наружные диаметры ступиц у торца для стальных колес определяются по формуле /4/:
dст = 1,6 * dв (2.3.13.)
для шестерни dст = 1,6 * 98 = 156,8 мм
для колеса dст = 1,6 * 126 = 201,6 мм
Длина ступиц определяется по формуле /4/:
lст = 1,2 * dв (2.3.14.)
для шестерни lст = 1,2 * 98 = 117,6 мм
для колеса lст = 1,2 * 126 = 151 мм
Толщина обода колеса определяется по формуле /4/:
D2 = 2,5 * m (2.3.15)
D2 = 2,5 * 14 = 25 мм
Толщина диска колеса определяется по формуле /4/:
С = 3 * m (2.3.16.)
С = 3 * 14 = 41 мм
2.4. Расчет валов редуктора.
2.4.1. Определение расстояний между деталями передач.
Расстояния между деталями передач определяем по расчетной схеме 2.4.1.
Расстояния между внешними поверхностями деталей передач определяется по соотношению:
L = d1 + d2 / 2 + d3 / 2 + d4 (2.4.1.1.)
L = 65,3 + 359,2 / 2 + 85,5 / 2 + 369 = 656 мм
Расстояние между вращающимися колесами и внутренними стенками редуктора определяется по формуле:
а = L + 3 (2.4.1.2.)
а = 656 + 3 = 12 мм
Расстояние между дном корпуса и поверхностью колес определяется из соотношения b0 4 * а.
b0 48 мм
Расстояние между торцевыми поверхностями колес принимаем с = = (0,3...0,5) * а
с = 0,5 * 12 = 6 мм
Расстояние между деталями передач.
2.4.2. Расчет быстроходного вала.
Определяются предварительные размеры вала /7/, показанные на рис.2.4.2.1.
d (7...8) * TБ , (2.4.2.1.)
dП d + 2 * t , (2.4.2.2.)
dБП dП + 3 * r , (2.4.2.3.)
где ТБ - крутящий момент на быстроходном валу, Н*м;
t - высота заплечика, мм;
r - координата фаски подшипника.
d 7 * 125,44 = 35 мм
dП 35 + 2 * 2,5 = 40 мм
dБП 40 + 3 * 2,5 = 47,5 мм
Вычисленные значения округляем в ближайшую сторону до стандартных, ГОСТ 6636-69.
d = 36 мм; dП = 40 мм; dБП = 48 мм.
Составляем расчетную схему вала, рис. 2.4.2.2.
Положение опор и точки приложения сил определяем приближенно.
l = B + (20...25) мм
l = l1 + l2
l1 = l / 3
l = 240 + 21 = 261 мм
l1 = 261 / 3 = 87 мм
l2 = 261 - 87 = 174 мм
Определяем основные нагрузки, приводим силы Ft , Fa , Fr к точке на оси вала, при этом возникает пара сил.
Ft1 = 3842 Н; Fa1 = 756,9 Н; Fr1 = 1427 Н.
М = Fa1 * d1 / 2 = 756,9 * 0,0653 / 2 = 24,7 Н*м
Крутящий момент на валу:
Т = Ft1 * d1 / 2 = 3842 * 0,0653 / 2 = 125,4 Н*м
Определяем реакции опор, используя уравнения статики в плоскости ZY:
по условию МZ2 = 0 или - RZ1 * (l1 + l2) - M + Fr1 * l2 = 0
RZ1 = (- M + Fr1 * l2) / (l1 + l2)
RZ1 = (-24,7 + 1427 * 0,174) / (0,087 + 0,174) = 856,7 Н
по условию МZ1 = 0 или - RZ2 * (l1 + l2) - M + Fr1 * l1 = 0
RZ2 = (- M + Fr1 * l1) / (l1 + l2)
RZ2 = (-24,7 + 1427 * 0,087) / (0,087 + 0,174) = 570,3 Н
Проверка F2 = 0, т.е. RZ1 + RZ2 - Fr1 = 0 .
856,7 + 570,3 - 1427 = 0 - реакции определены правильно.
Определяем реакции опор, используя уравнения статики в плоскости ХY:
по условию МХ2 = 0 или - RХ1 * (l1 + l2) + Ft1 * l2 = 0
RХ1 = (Ft1 * l2) / (l1 + l2)
RХ1 = (3842 * 0,174) / (0,087 + 0,174) = 2561,3 Н
-Ft1 + RХ1 + RХ2 = 0 RХ2 = RХ1 - Ft1 = 3842 - 2561,3 = 1280,7 Н
Определяем изгибающие моменты:
в плоскости ZY, сечении 1-1
МZ1 = RZ1 * l1 = 856,7 * 0,087 = 74,5 Н*м
МZ1 = МZ1 + М = 74,5 + 24,7 = 99,2 Н*м
в плоскости ХY, сечении 1-1
МХ1 = RХ1 * l1 = 2561,3 * 0,087 = 222,8 Н*м
Строим эпюры изгибающих моментов МZ , МХ , рис. 2.4.2.2.
Определяем суммарные изгибающие моменты в сечении 1-1.
Наиболее опасное сечение - 1-1, где расположена шестерня вала.
Определяем коэффициент запаса прочности по формуле /7/:
где [S] - допускаемый коэффициент запаса прочности, [S] = 2...2,5;
S - коэффициент запаса прочности по напряжениям изгиба;
S - коэффициент запаса прочности по напряжениям кручения.
где -1 , - 1 - пределы выносливости материала вала соответственно при изгибе и кручении, МПа;
-1 = (0,4...0,5) * в ; - 1 = 0,58 * -1 ,
где в - предел прочности материала вала, МПа (по табл. 10.2. /7/);
а и а - амплитуды переменных составляющих циклов напряжений, МПа;